Statistical Inference for Self-Exciting Threshold INAR Processes with Missing Values

Han Yan , Dehui Wang

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (4) : 795 -814.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (4) : 795 -814. DOI: 10.1007/s40304-021-00275-2
Article

Statistical Inference for Self-Exciting Threshold INAR Processes with Missing Values

Author information +
History +
PDF

Abstract

The time series model with threshold characteristics under fully observations has been explored intensively in recent years. In this article, several methods are proposed to estimate the parameters of the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) process in the presence of completely random missing data. In order to dispose of the non-equidistance in the observed data, we research the conditional least squares and conditional maximum likelihood inference based on the p-step-ahead conditional distribution of incomplete observations; in addition, three kinds of imputation methods are investigated to deal with the missing values for estimating the parameters of interest. Multiple groups of stochastic simulation studies are carried out to compare the proposed approaches.

Keywords

SETINAR process / Integer-valued threshold models / Missing data / Imputation

Cite this article

Download citation ▾
Han Yan, Dehui Wang. Statistical Inference for Self-Exciting Threshold INAR Processes with Missing Values. Communications in Mathematics and Statistics, 2023, 11(4): 795-814 DOI:10.1007/s40304-021-00275-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Osh MA, Alzaid AA. First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal.. 1987, 8 261-275

[2]

Andersson J, Karlis D. Treating missing values in INAR(1) models: an application to syndromic surveillance data. J. Time Ser. Anal.. 2010, 31 12-19

[3]

Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol.. 2006, 59 1087-1091

[4]

Du JG, Li Y. The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal.. 1991, 12 129-142

[5]

Jia B, Wang D, Zhang H. A study for missing values in PINAR$(1)_T$ processes. Commun. Stat. Theory Methods. 2014, 43 4780-4789

[6]

Jia, B.: Statistical Inference of a Class Integer-Valued Time Series with Missing Values. Jilin University, Changchun (2014) (in Chinese)

[7]

Li D, Tong H. Nested sub-sample search algorithm for estimation of threshold models. Stat. Sin.. 2016, 26 1543-1554

[8]

Li H, Yang K, Wang D. Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive. Comput. Stat.. 2017, 32 1597-1620

[9]

Li H, Yang K, Wang D. A threshold stochastic volatility model with explanatory variables. Stat. Neerl.. 2019, 73 118-138

[10]

Lin W, Tsai C-F. Missing value imputation: a review and analysis of the literature (2006–2017). Artif. Intell. Rev.. 2020, 53 1487-1509

[11]

Möller, T.A., Wei${\cal{B}}$, C.H.: Stochastic models, statistics and their applications. In: Steland (ed) Threshold Models for Integer-Valued Time Series with Infinite and Finite Range. Springer Proceedings in Mathematics and Statistics, pp. 327–334. Springer, Berlin (2015)

[12]

Monteiro M, Scotto MG, Pereira I. Integer-valued autoregressive processes with periodic structure. J. Stat. Plan. Inference. 2010, 140 1529-1541

[13]

Monteiro M, Scotto MG, Pereira I. Integer-valued self-exciting threshold autoregressive processes. Commun. Stat. Theory Methods. 2012, 41 2717-2737

[14]

Raaijmakers, QAW. Effectiveness of different missing data treatments in surveys with Likert-type data: introducing the relative mean substitution approach. Educ. Psychol. Meas.. 1999, 59 725-748

[15]

Ristić MM, Bakouch HS, Nastić AS. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference. 2009, 139 2218-2226

[16]

Rubin DB. Inference and missing data. Biometrika. 1976, 63 581-592

[17]

Scotto MG, Wei CH, Gouveia S. Thinning-based models in the analysis of integer-valued time series: a review. Stat. Model.. 2015, 15 590-618

[18]

Steutel F, van Harn K. Discrete analogues of self-decomposability and stability. Ann. Probab.. 1979, 7 893-899

[19]

Tong H. Chen CH. On a threshold model. Pattern Recognition and Signal Processing. 1978 Amsterdam: Sijthoff and Noordhoff. 575-586

[20]

Tong H, Lim KS. Threshold autoregressive, limit cycles and cyclical data. J. R. Stat. Soc. B. 1980, 42 245-292

[21]

Yang K, Wang D, Jia B, Li H. An integer-valued threshold autoregressive process based on negative binomial thinning. Stat. Pap.. 2018, 59 1131-1160

Funding

National Natural Science Foundation of China(No.11871028)

National Natural Science Foundation of China(11901053)

Natural Science Foundation of Jilin Province(No.20180101216JC)

Program for Changbaishan Scholars of Jilin Province(2015010)

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/