Nested Group Testing Procedure

Wenjun Xiong , Juan Ding , Wei Zhang , Aiyi Liu , Qizhai Li

Communications in Mathematics and Statistics ›› 2022, Vol. 11 ›› Issue (4) : 663 -693.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 11 ›› Issue (4) : 663 -693. DOI: 10.1007/s40304-021-00269-0
Article

Nested Group Testing Procedure

Author information +
History +
PDF

Abstract

We investigated the false-negative, true-negative, false-positive, and true-positive predictive values from a general group testing procedure for a heterogeneous population. We show that its false (true)-negative predictive value of a specimen is larger (smaller), and the false (true)-positive predictive value is smaller (larger) than that from individual testing procedure, where the former is in aversion. Then we propose a nested group testing procedure, and show that it can keep the sterling characteristics and also improve the false-negative predictive values for a specimen, not larger than that from individual testing. These characteristics are studied from both theoretical and numerical points of view. The nested group testing procedure is better than individual testing on both false-positive and false-negative predictive values, while retains the efficiency as a basic characteristic of a group testing procedure. Applications to Dorfman’s, Halving and Sterrett procedures are discussed. Results from extensive simulation studies and an application to malaria infection in microscopy-negative Malawian women exemplify the findings.

Keywords

Group testing / Negative predictive value / Positive predictive value / Retest

Cite this article

Download citation ▾
Wenjun Xiong, Juan Ding, Wei Zhang, Aiyi Liu, Qizhai Li. Nested Group Testing Procedure. Communications in Mathematics and Statistics, 2022, 11(4): 663-693 DOI:10.1007/s40304-021-00269-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avrahami-MoyalL, TamY, BruminM, PrakashS, LeibmanD, PearlsmanM, BornsteinM, SelaN, ZeidanM, DarZ, ZigU. Detection of potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica, 2017, 454591-598.

[2]

BilderCR, TebbsJM, ChenP. Informative retesting. J. Am. Stat. Assoc., 2010, 105491942-955.

[3]

BlackMS, BilderCR, TebbsJM. Group testing in heterogeneous populations by using halving algorithms. J. Roy. Stat. Soc. C-App., 2012, 612277-290.

[4]

DemolyP, RomanoA, BotelhoC, Bousquet-RouanetL, GaetaF, SilvaR, RumiG, Rodrigues CernadasJ, BousquetPJ. Determining the negative predictive value of provocation tests with beta-lactams. Allergy, 2010, 653327-332.

[5]

DineshaTR, BoobalanJ, SivamalarS, SubashiniD, SolomonSS, MurugavelKG, BalakrishnanP, SmithDM, SaravananS. Occult HBV infection in HIV-infected adults and evaluation of pooled NAT for HBV. J. Viral Hepatitis, 2018, 256718-723.

[6]

DorfmanR. The detection of defective members of large populations. Ann. Math. Stat., 1943, 144436-440.

[7]

DustonMA, SkinnerM, MeenanRF, CohenAS. Sensitivity, specificity, and predictive value of abdominal fat aspiration for the diagnosis of amyloidosis. Arthritis Rheum., 1989, 32182-85.

[8]

EdouardS, PrudentE, GautretP, MemishZA, RaoultD. Cost-effective pooling of DNA from nasopharyngeal swab samples for large-scale detection of bacteria by real-time PCR. J. Clin. Microbiol., 2015, 5331002-1004.

[9]

FinucaneMM, RowleyCF, PaciorekCJ, EssexM, PaganoM. Estimating the prevalence of transmitted HIV drug resistance using pooled samples. Stat. Methods Med. Res., 2016, 252917-935.

[10]

GastwirthJL. The efficiency of pooling in the detection of rare mutations. Am. J. Hum. Genet., 2000, 6741036-1039.

[11]

GregoryKB, WangD, McMahanCS. Adaptive elastic net for group testing. Biometrics, 2019, 75113-23.

[12]

HouP, TebbsJM, BilderCR, McMahanCS. Hierarchical group testing for multiple infections. Biometrics, 2017, 732656-665.

[13]

JohnsonNL, KotzS, WuXZInspection Errors for Attributes in Quality Control, 1991New YorkChapman and Hall.

[14]

JonesCM, ZhigljavskyAA. Comparison of costs for multi-stage group testing methods in the pharmaceutical industry. Commun. Stat.-Theory., 2001, 30102189-2209.

[15]

KimHY, HudgensMG, DreyfussJM, WestreichDJ, PilcherCD. Comparison of group testing algorithms for case identification in the presence of test error. Biometrics, 2007, 6341152-1163.

[16]

LagopatiN, TsioliP, MourkiotiI, PolyzouA, PapaspyropoulosA, ZafiropoulosA, EvangelouK, SourvinosG, GorgoulisVG. Sample pooling strategies for SARS-CoV-2 detection. J. Virol. Methods, 2020, 289. 114044

[17]

LitvakE, TuXM, PaganoM. Screening for the presence of a disease by pooling sera samples. J. Am. Stat. Assoc., 1994, 89426424-434.

[18]

McMahanCS, TebbsJM, BilderCR. Informative dorfman screening. Biometrics, 2012, 681287-296.

[19]

McMahanCS, TebbsJM, BilderCR. Two-dimensional informative array testing. Biometrics, 2012, 683793-804.

[20]

Montesinos-LópezOA, EskridgeK, Montesinos-LópezA, CrossaJ, Cortés-CruzM, WangD. A regression model for pooled data in a two-stage survey under informative sampling with application for detecting and estimating the presence of transgenic corn. Seed Sci. Res., 2016, 262182-197.

[21]

WangD, McMahanCS, GallagherCM. A general regression framework for group testing data, which incorporates pool dilution effects. Stat. Med., 2015, 34273606-3621.

[22]

WangD, McMahanCS, TebbsJM, BilderCR. Group testing case identification with biomarker information. Comput. Stat. Data Anal., 2018, 122: 156-166.

[23]

XiongW, DingJ, HeY, LiQ. Improved matrix pooling. Stat. Methods Med. Res., 2019, 281211-222.

[24]

XiongW, DingJ, LiQ. The Review of Statistical Methods in Group Testing. J. Appl. Stat. Manag., 2016, 355838-855

[25]

ZhangW, LiuA, LiQ, AlbertPS. Incorporating retesting outcomes for estimation of disease prevalence. Stat. Med., 2020, 396687-697.

[26]

ZhangW, LiuA, LiQ, AlbertPS. Nonparametric estimation of distributions and diagnostic accuracy based on group-tested results with differential misclassification. Biometrics, 2020, 7641147-1156.

[27]

ZhouZ, MitchellRM, GutmanJ, WiegandRE, MwandamaDA, MathangaDP, SkarbinskiJ, ShiYP. Pooled PCR testing strategy and prevalence estimation of submicroscopic infections using Bayesian latent class models in pregnant women receiving intermittent preventive treatment at Machinga District Hospital, Malawi, 2010. Malaria J., 2014, 131509.

Funding

National Natural Science Foundation of China(11801102)

Natural Science Foundation of Beijing Municipality(Z180006)

RIGHTS & PERMISSIONS

School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/