On Modules Satisfying S-Noetherian Spectrum Condition

Mehmet Özen , Osama A. Naji , Ünsal Tekir , Suat Koç

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 649 -662.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 649 -662. DOI: 10.1007/s40304-021-00268-1
Article

On Modules Satisfying S-Noetherian Spectrum Condition

Author information +
History +
PDF

Abstract

Let R be a commutative ring having nonzero identity and M be a unital R-module. Assume that $S\subseteq R$ is a multiplicatively closed subset of R. Then, M satisfies S-Noetherian spectrum condition if for each submodule N of M, there exist $s\in S$ and a finitely generated submodule $F\subseteq N$ such that $sN\subseteq \text {rad}_{M}(F)$, where $\text {rad}_{M}(F)$ is the prime radical of F in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of S-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying S-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the S-Noetherian spectrum condition.

Keywords

Noetherian modules / S-Noetherian modules / Noetherian spectrum / S-Noetherian spectrum condition

Cite this article

Download citation ▾
Mehmet Özen, Osama A. Naji, Ünsal Tekir, Suat Koç. On Modules Satisfying S-Noetherian Spectrum Condition. Communications in Mathematics and Statistics, 2023, 11(3): 649-662 DOI:10.1007/s40304-021-00268-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/