On Modules Satisfying S-Noetherian Spectrum Condition

Mehmet Özen , Osama A. Naji , Ünsal Tekir , Suat Koç

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 649 -662.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 649 -662. DOI: 10.1007/s40304-021-00268-1
Article

On Modules Satisfying S-Noetherian Spectrum Condition

Author information +
History +
PDF

Abstract

Let R be a commutative ring having nonzero identity and M be a unital R-module. Assume that $S\subseteq R$ is a multiplicatively closed subset of R. Then, M satisfies S-Noetherian spectrum condition if for each submodule N of M, there exist $s\in S$ and a finitely generated submodule $F\subseteq N$ such that $sN\subseteq \text {rad}_{M}(F)$, where $\text {rad}_{M}(F)$ is the prime radical of F in the sense (McCasland and Moore in Commun Algebra 19(5):1327–1341, 1991). Besides giving many properties and characterizations of S-Noetherian spectrum condition, we prove an analogous result to Cohen’s theorem for modules satisfying S-Noetherian spectrum condition. Moreover, we characterize modules having Noetherian spectrum in terms of modules satisfying the S-Noetherian spectrum condition.

Keywords

Noetherian modules / S-Noetherian modules / Noetherian spectrum / S-Noetherian spectrum condition

Cite this article

Download citation ▾
Mehmet Özen, Osama A. Naji, Ünsal Tekir, Suat Koç. On Modules Satisfying S-Noetherian Spectrum Condition. Communications in Mathematics and Statistics, 2023, 11(3): 649-662 DOI:10.1007/s40304-021-00268-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed H. S-Noetherian spectrum condition. Commun. Algebra. 2018, 46 8 3314-3321

[2]

Ameri R. On the prime submodules of multiplication modules. Int. J. Math. Math. Sci.. 2003, 2003 27 1715-1724

[3]

Anderson DD, Winders M. Idealization of a module. J. Commut. Algebra. 2009, 1 1 3-56

[4]

Anderson DD, Dumitrescu T. S-Noetherian rings. Commun. Algebra. 2002, 30 9 4407-4416

[5]

Eisenbud D. Subrings of Artinian and Noetherian rings. Math. Ann.. 1970, 185 3 247-249

[6]

El-Bast ZA, Smith PE. Multiplication modules. Commun. Algebra. 1988, 16 4 755-779

[7]

Gilmer R, Heinzer W. The Laskerian condition, power series rings and Noetherian spectra. Proc. Am. Math. Soc.. 1980, 79 1 13-16

[8]

Gilmer, R.: Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathematics, vol. 12. Queen’s University, Kingston (1968)

[9]

Heinzer W, Ohm J. Locally Noetherian commutative rings. Trans. Am. Math. Soc.. 1971, 158 2 273-284

[10]

Hedayat S, Rostami E. A characterization of commutative rings whose maximal ideal spectrum is Noetherian. J. Algebra Appl.. 2018, 17 01 1850003

[11]

Karakas HI. On Noetherian modules. METU J. Pure Appl. Sci.. 1972, 5 2 165-168

[12]

Lu CP. Modules with Noetherian spectrum. Commun. Algebra. 2010, 38 807-828

[13]

Lu CP. Prime submodules of modules. Comment. Math. Univ. St. Paul.. 1984, 33 61-69

[14]

Lu CP. Modules and rings satisfying (ACCR). Proc. Am. Math. Soc.. 1993, 117 1 5-10

[15]

McCasland RL, Moore ME. On radicals of submodules of finitely generated modules. Canad. Math. Bull.. 1986, 29 1 37-39

[16]

McCasland RL, Moore ME. On radicals of submodules. Commun. Algebra. 1991, 19 5 1327-1341

[17]

Moore ME, Smith SJ. Prime and radical submodules of modules over commutative rings. Commun. Algebra. 2002, 30 10 5037-5064

[18]

Ohm J, Pendleton RL. Rings with Noetherian spectrum. Duke Math. J.. 1968, 35 3 631-639

[19]

Park MH. Noetherian-like properties in polynomial and power series rings. J. Pure Appl. Algebra. 2019, 223 9 3980-3988

[20]

Rush DE. Noetherian spectrum on rings and modules. Glasgow Math. J.. 2011, 53 3 707-715

[21]

Sharp, R.Y.: Steps in Commutative Algebra, vol. 51. Cambridge University Press (2000)

[22]

Smith PF. Some remarks on multiplication modules. Archiv der Mathematik. 1988, 50 3 223-235

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/