An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings

Tong Pu , Narayanaswamy Balakrishnan , Chuancun Yin

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 629 -647.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 629 -647. DOI: 10.1007/s40304-021-00267-2
Article

An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings

Author information +
History +
PDF

Abstract

We establish an identity for $Ef\left( \varvec{Y}\right) - Ef\left( \varvec{X}\right) $, when $\varvec{X}$ and $\varvec{Y}$ both have matrix variate skew-normal distributions and the function f satisfies some weak conditions. The characteristic function of matrix variate skew normal distribution is then derived. We then make use of it to derive some necessary and sufficient conditions for the comparison of matrix variate skew-normal distributions under six different orders, such as usual stochastic order, convex order, increasing convex order, upper orthant order, directionally convex order and supermodular order.

Keywords

Characteristic function / Integral order / Matrix variate skew-normal distributions / Stochastic comparisons

Cite this article

Download citation ▾
Tong Pu, Narayanaswamy Balakrishnan, Chuancun Yin. An Identity for Expectations and Characteristic Function of Matrix Variate Skew-normal Distribution with Applications to Associated Stochastic Orderings. Communications in Mathematics and Statistics, 2023, 11(3): 629-647 DOI:10.1007/s40304-021-00267-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdi M, Madadi M, Balakrishnan N, Jamalizadeh A. Family of mean-mixtures of multivariate normal distributions: properties, inference and assessment of multivariate skewness. J. Multiv. Anal.. 2021, 181 104679

[2]

Amiri M, Izadkhah S, Jamalizadeh A. Linear orderings of the scale mixtures of the multivariate skew-normal distribution. J. Multiv. Anal.. 2020, 179 104647

[3]

Anderlucci L, Viroli C. Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data. Annal. Appl. Statit.. 2015, 9 2 777-800

[4]

Ansari J, Rüschendorf L. Ordering results for elliptical distributions with applications to risk bounds. J. Multiv. Anal.. 2021, 182 104709

[5]

Arlotto A, Scarsini M. Hessian orders and multinormal distributions. J. Multiv. Anal.. 2009, 100 10 2324-2330

[6]

Azzalini A. A class of distributions which includes the normal ones. Scandinavian J. Statit.. 1985, 12 2 171-178

[7]

Azzalini A, Capitanio A. Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc.: Ser. B. 1999, 61 3 579-602

[8]

Azzalini A, Capitanio A. The Skew-normal and related families. 2013 England: Cambridge University Press

[9]

Azzalini A, Dalla VA. The multivariate skew-normal distribution. Biometrika. 1996, 83 4 715-726

[10]

Azzalini A, Regoli G. Some properties of skew-symmetric distributions. Annal. Instit. Stat. Math.. 2012, 64 4 857-879

[11]

Balakrishnan N, Belzunce F, Sordo MA, Suárez-Llorens A. Increasing directionally convex orderings of random vectors having the same copula, and their use in comparing ordered data. J. Multiv. Anal.. 2012, 105 1 45-54

[12]

Bäuerle N. Inequalities for stochastic models via supermodular orderings. Stoch. Models. 1997, 13 1 181-201

[13]

Belzunce F. An introduction to the theory of stochastic orders. Boletín de Estadística e Investigacion Operativa (SEIO). 2010, 26 1 4-18

[14]

Caro-Lopera FJ, Leiva V, Balakrishnan N. Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions. J. Multiv. Anal.. 2012, 104 1 126-139

[15]

Chen EY, Tsay RS, Chen R. Constrained factor models for high-dimensional matrix-variate time series. J. Am. Stat. Assoc.. 2020, 115 775-793

[16]

Chen JT, Gupta AK. Matrix variate skew normal distributions. Statistics. 2005, 39 3 247-253

[17]

Davidov O, Peddada S. The linear stochastic order and directed inference for multivariate ordered distributions. Annal. Stat.. 2013, 41 1-40

[18]

Denuit M, Müller A. Smooth generators of integral stochastic orders. Ann. Appl. Prob.. 2002, 12 4 1174-1184

[19]

Denuit M, Dhaene J, Goovaerts M, Kaas R. Actuarial theory for dependent risks: measures orders and models. 2006 Chichester, England: Wiley

[20]

Ding Y, Zhang X. Some stochastic orders of Kotz-type distributions. Stat. Probab. Lett.. 2004, 69 389-396

[21]

Domínguez-Molina JA, González-Farías G, Ramos-Quiroga R, Gupta AK. A matrix variate closed skew-normal distribution with applications to stochastic frontier analysis. Commun. Stat.-Theory Methods. 2007, 36 9 1691-1703

[22]

Genton MG, He L, Liu X. Moments of skew-normal random vectors and their quadratic forms. Stat. Probab. Lett.. 2001, 51 4 319-325

[23]

Hadeler K-P. On copositive matrices. Linear Algebra Appl.. 1983, 49 79-89

[24]

Harrar SW, Gupta AK. On matrix variate skew-normal distributions. Statistics. 2008, 42 2 179-194

[25]

Hürlimann W. On likelihood ratio and stochastic order for skew-symmetric distributions with a common kernel. Int. J. Contemp. Math. Sci.. 2013, 8 20 957-967

[26]

Jamali D, Amiri M, Jamalizadeh A. Comparison of the multivariate skew-normal random vectors based on the integral stochastic ordering. Commun. Stat.-Theory Methods. 2020, 57 1-13

[27]

Jamali D, Amiri M, Jamalizadeh A, Balakrishnan N. Integral stochastic ordering of the multivariate normal mean-variance and the skew-normal scale-shape mixture models. Stat., Optim. Inf. Comput.. 2020, 8 1 1-16

[28]

Joe H. Multivariate concordance. J. Multiv. Anal.. 1990, 35 12-30

[29]

Kim H-M, Genton MG. Characteristic functions of scale mixtures of multivariate skew-normal distributions. J. Multiv. Anal.. 2011, 102 7 1105-1117

[30]

Landsman Z, Tsanakas A. Stochastic ordering of bivariate elliptical distributions. Stat. Probab. Lett.. 2006, 76 488-494

[31]

Magnus JR, Neudecker H. Matrix differential calculus with applications in statistics and econometrics. 2019 Hoboken, New Jersey: Wiley

[32]

Müller A. Stochastic orders generated by integrals: a unified study. Adv. Appl. Probab.. 1997, 35 414-428

[33]

Müller A. Stochastic ordering of multivariate normal distributions. Annal. Instit. Stat. Math.. 2001, 53 3 567-575

[34]

Müller A, Scarsini M. Some remarks on the supermodular order. J. Multiv. Anal.. 2000, 73 1 107-119

[35]

Müller A, Stoyan D. Comparison methods for stochastic models and risks. 2002 New York: Wiley

[36]

Ning W, Gupta AK. Matrix variate extended skew normal distributions. Random Op. Stoch. Eq.. 2012, 20 4 299-310

[37]

Pan X, Qiu G, Hu T. Stochastic orderings for elliptical random vectors. J. Multiv. Anal.. 2016, 148 83-88

[38]

Rezaei A, Yousefzadeh F, Arellano-Valle RB. Scale and shape mixtures of matrix variate extended skew normal distributions. J. Multiv. Anal.. 2020, 179 104649

[39]

Shaked M, Shanthikumar JG. Stochastic orders. 2007 New York: Springer

[40]

Shushi T. Generalized skew-elliptical distributions are closed under affine transformations. Stat. Probab. Lett.. 2018, 134 1-4

[41]

Tong YL. Probability inequalities in multivariate distributions. 2014 Boston: Academic Press

[42]

Ye R, Wang T, Gupta AK. Distribution of matrix quadratic forms under skew-normal settings. J. Multiv. Anal.. 2014, 131 229-239

[43]

Yin, C.: Stochastic orderings of multivariate elliptical distributions. J. Appl. Probab. 58, 551–568 (2021)

Funding

National Natural Science Foundation of China(12071251)

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/