Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise

Zhen-Qing Chen , Yaozhong Hu

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 563 -582.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 563 -582. DOI: 10.1007/s40304-021-00264-5
Article

Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise

Author information +
History +
PDF

Abstract

This paper provides necessary as well as sufficient conditions on the Hurst parameters so that the continuous time parabolic Anderson model $\frac{\partial u}{\partial t}=\frac{1}{2}\Delta +u{\dot{W}}$ on $[0, \infty )\times {{\mathbb {R}}}^d $ with $d\ge 1$ has a unique random field solution, where W(tx) is a fractional Brownian sheet on $[0, \infty )\times {{\mathbb {R}}}^d$ and formally $\dot{W} =\frac{\partial ^{d+1}}{\partial t \partial x_1 \cdots \partial x_d} W(t, x)$. When the noise W(tx) is white in time, our condition is both necessary and sufficient when the initial data u(0, x) is bounded between two positive constants. When the noise is fractional in time with Hurst parameter $H_0>1/2$, our sufficient condition, which improves the known results in the literature, is different from the necessary one.

Keywords

Stochastic heat equation / Fractional Brownian fields / Wiener chaos expansion / Random field solution / Necessary condition / sufficient condition / Moment bounds

Cite this article

Download citation ▾
Zhen-Qing Chen, Yaozhong Hu. Solvability of Parabolic Anderson Equation with Fractional Gaussian Noise. Communications in Mathematics and Statistics, 2023, 11(3): 563-582 DOI:10.1007/s40304-021-00264-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen L, Hu Y, Kalbasi K, Nualart D. Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab. Theory Related Fields. 2018, 171 431-457

[2]

Chen X. Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat.. 2019, 55 941-976

[3]

Chen X. Parabolic Anderson model with a fractional Gaussian noise that is rough in time. Ann. Inst. Henri Poincaré Probab. Stat.. 2020, 56 792-825

[4]

Dalang, R.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4 (1999), no. 6, 29 pp

[5]

Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press (1992)

[6]

Hu Y. Chaos expansion of heat equations with white noise potentials. Potential Anal.. 2002, 16 1 45-66

[7]

Hu Y. Some recent progress on stochastic heat equations. Acta Math Sci.. 2019, 39 874-914

[8]

Hu Y, Huang J, K, Nualart D, Tindel S. Stochastic heat equation with rough dependence in space. Ann. Probab.. 2017, 45 4561-4616

[9]

Hu, Y., Huang, J., Lê, K., Nualart, D. and Tindel, S.: Parabolic Anderson model with rough dependence in space. Computation and combinatorics in Dynamics, Stochastics and Control, 477-498, Abel Symp., 13, Springer, Cham, (2018)

[10]

Hu Y, Huang J, Nualart D, Tindel S. Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab.. 2015, 20 55 50 pp

[11]

Hu Y, Le K. Joint Hölder continuity of parabolic Anderson model. Acta Math. Sci. l. 2019, 39 764-780

[12]

Hu Y, Liu Y, Tindel S. On the necessary and sufficient conditions to solve a heat equation with general additive Gaussian noise. Acta Math. Sci.. 2019, 39 669-690

[13]

Hu Y, Lu F, Nualart D. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter $H<1/2$. Ann. Probab.. 2012, 40 3 1041-1068

[14]

Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields. 2009, 143 1–2 285-328

[15]

Hu Y, Nualart D, Song J. Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab.. 2011, 39 1 291-326

[16]

Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, (2006)

Funding

Simons Foundation

Canadian Network for Research and Innovation in Machining Technology

Natural Sciences and Engineering Research Council of Canada

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/