Explicit Generators of the Centre of the Quantum Group

Yanmin Dai

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 541 -562.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 541 -562. DOI: 10.1007/s40304-021-00263-6
Article

Explicit Generators of the Centre of the Quantum Group

Author information +
History +
PDF

Abstract

A finite generating set of the centre of any quantum group is obtained, where the generators are given by an explicit formulae. For the slightly generalised version of the quantum group which we work with, we show that this set of generators is algebraically independent, thus the centre is isomorphic to a polynomial algebra.

Keywords

Quantum groups / Central elements / Harish-Chandra isomorphism

Cite this article

Download citation ▾
Yanmin Dai. Explicit Generators of the Centre of the Quantum Group. Communications in Mathematics and Statistics, 2023, 11(3): 541-562 DOI:10.1007/s40304-021-00263-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bracken AJ, Gould MD, Zhang RB. Quantum supergroups and solutions of the Yang-Baxter equation. Mod. Phys. Lett. A. 1990, 5 11 831-840

[2]

Bracken AJ, Green HS. Vector operators and a polynomial identity for $SO(n)$. J. Math. Phys.. 1971, 12 2099-2106

[3]

De Concini, C., Kac, V.G., Procesi, C.: Representations of quantum groups at roots of 1. In: Modern Quantum Field Theory’s (Bombay, 1990), pp. 333–335 (1990)

[4]

De Monvel, L.B., De Concini, C., Procesi, C., et al. D-modules, Representation Theory, and Quantum Groups (Venice, 1992). Lecture Notes in Math., vol. 1565, , pp. 31–140. Springer, Berlin (1993)

[5]

Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986), pp. 798–820. Amer. Math. Soc, Providence (1987)

[6]

Drinfeld VG . Quasi-Hopf algebras (Russian). Algebra i Analiz. 1989, 1 6 114-148

[7]

Fulton, W., Harris, J.: Representation Theory: A First Course, vol. 129. Springer, Berlin (2013)

[8]

Gould MD. Reduced Wigner coefficients for ${{\rm U}}_q[\mathfrak{gl}(n)]$. J. Math. Phys.. 1992, 33 3 1023-1031

[9]

Gould MD, Zhang RB, Bracken AJ. Generalized Gelfand invariants and characteristic identities for quantum groups. J. Math. Phys.. 1991, 32 9 2298-2303

[10]

Humphreys JE . Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics. 1972 New York: Springer

[11]

Jantzen JC. Lectures on Quantum Groups. Graduate Studies in Mathematics. 1996 Providence: American Mathematical Society

[12]

Joseph A, Letzter G. Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra. 1992, 153 2 289-318

[13]

Kassel C. Quantum Groups. Graduate Texts in Mathematics. 1995 New York: Springer

[14]

Kirillov AN, Reshetikhin N. q-Weyl group and a multiplicative formula for universal R-matrices. Commun. Math. Phys.. 1990, 134 2 421-431

[15]

Li J. The quantum Casimir operators of ${{\rm U}}_q({\mathfrak{gl}}_n)$ and their eigenvalues. J. Phys. A Math. Theor.. 2010, 43 34 345202

[16]

Li L, Wu J, Zhu M. Quantum Weyl polynomials and the centre of the quantum group ${\rm U}_q(\mathfrak{sl}_3)$. Algebra Colloq.. 2012, 19 3 525-532

[17]

Li, L., Xia, L., Zhang, Y.: On the center of the quantized enveloping algebra of a simple Lie algebra (2016). arXiv preprint arXiv:1607.00802

[18]

Lusztig G. On quantum groups. J. Algebra. 1990, 131 2 466-475

[19]

Lusztig G . Introduction to Quantum Groups. Progress in Mathematics. 1993 Boston: Birkhauser Boston, Inc.

[20]

Tanisaki T. Harish-Chandra isomorphisms for quantum algebras. Commun. Math. Phys.. 1990, 127 3 555-571

[21]

Tanisaki T. Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras. Int. J. Mod. Phys. A. 1992, 7 941-961

[22]

Werry JL, Isaac PS, Gould MD. Reduced Wigner coefficients for Lie superalgebra ${\mathfrak{gl}}(m|n)$ corresponding to unitary representations and beyond. J. Phys.. 2017, 50 36 365202

[23]

Wu JY , Wei JC, Li LB. Quantum Weyl symmetric polynomials and the centre of quantum group ${\rm U}_q(\mathfrak{sl}_4)$. Sci. China Math.. 2011, 54 1 5-64

[24]

Zhang RB, Gould MD, Bracken AJ. Quantum group invariants and link polynomials. Commun. Math. Phys.. 1991, 137 1 13-27

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/