A Note on the Filtered Decomposition Theorem

Zebao Zhang

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 519 -539.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 519 -539. DOI: 10.1007/s40304-021-00262-7
Article

A Note on the Filtered Decomposition Theorem

Author information +
History +
PDF

Abstract

We generalize the logarithmic decomposition theorem of Deligne–Illusie to a filtered version. There are two applications. The easier one provides a mod p proof for a vanishing theorem in characteristic zero. The deeper one gives rise to a positive characteristic analogue of a theorem of Deligne on the mixed Hodge structure attached to complex algebraic varieties.

Keywords

Decomposition theorem / Mixed Fontaine–Laffaille complex / Spectral sequence / Vanishing theorem / Weight filtration

Cite this article

Download citation ▾
Zebao Zhang. A Note on the Filtered Decomposition Theorem. Communications in Mathematics and Statistics, 2023, 11(3): 519-539 DOI:10.1007/s40304-021-00262-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cattani E, El Zein F, Griffiths P, Tráng LD. Hodge theory, Mathematical Notes 49. 2014 Princeton: Princeton University Press

[2]

Deligne: Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math, No. 44, 5-77 (1974)

[3]

Deligne P, Illusie L. Relèvements modulo $p^2$ et decomposition du complexe de de Rham. Invent. Math.. 1987, 89 2 247-270

[4]

Esnault, H., Viehweg, E.: Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser Verlag, Basel (1992)

[5]

Faltings G. Crystalline Cohomology and $p$-adic Galois-Representations, Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), 25–80. 1989 Baltimore: Johns Hopkins University Press

[6]

Fontaine, J.-M., Laffaille, G.: Construction de représentation $p$-adiques. Ann. Sci. Ec. Norm. Sup. (4) 15(4), 547–608 (1982). ((1983))

[7]

Griffiths, P., Harris, J.: Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley &Sons], New York, xii+813 pp (1978)

[8]

Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, xvi+496 pp (1997)

[9]

Illusie, L.: Frobenius and Hodge degeneration, Introduction to Hodge theory, SMF/AMS Texts and Monographs, vol 8., 96-145, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2002)

[10]

Kashiwara M. A study of variation of mixed Hodge structure. Publ. Res. Inst. Math. Sci.. 1986, 22 5 991-1024

[11]

Lan G, Sheng M, Zuo K. Nonabelian Hodge theory in positive characteristic via exponential twisting. Math. Res. Lett.. 2015, 22 3 859-879

[12]

Lan G, Sheng M, Zuo K. Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups. J. Eur. Math. Soc. (JEMS). 2019, 21 10 3053-3112

[13]

Lan G, Sheng M, Yang Y, Zuo K. Uniformization of $p$-adic curves via Higgs-de Rham flows. J. Reine Angew. Math.. 2019, 747 63-108

[14]

Ogus, A., Vologodsky, V.: Nonabelian Hodge theory in characteristic $p$. Publ. Math. Inst. Hautes Études Sci. No. 106, 1–138 (2007)

[15]

Schepler, D.: Logarithmic nonabelian Hodge theory in characteristic $p$. (2008). arXiv:0802.1977V1

[16]

Sheng, M., Zhang, Z.: On the decomposition theorem for intersection de Rham complexes (2019). arXiv:1904.06651

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/