A Note on the Filtered Decomposition Theorem
Zebao Zhang
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (3) : 519 -539.
A Note on the Filtered Decomposition Theorem
We generalize the logarithmic decomposition theorem of Deligne–Illusie to a filtered version. There are two applications. The easier one provides a mod p proof for a vanishing theorem in characteristic zero. The deeper one gives rise to a positive characteristic analogue of a theorem of Deligne on the mixed Hodge structure attached to complex algebraic varieties.
Decomposition theorem / Mixed Fontaine–Laffaille complex / Spectral sequence / Vanishing theorem / Weight filtration
| [1] |
|
| [2] |
Deligne: Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math, No. 44, 5-77 (1974) |
| [3] |
|
| [4] |
Esnault, H., Viehweg, E.: Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser Verlag, Basel (1992) |
| [5] |
|
| [6] |
Fontaine, J.-M., Laffaille, G.: Construction de représentation $p$-adiques. Ann. Sci. Ec. Norm. Sup. (4) 15(4), 547–608 (1982). ((1983)) |
| [7] |
Griffiths, P., Harris, J.: Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley &Sons], New York, xii+813 pp (1978) |
| [8] |
Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, xvi+496 pp (1997) |
| [9] |
Illusie, L.: Frobenius and Hodge degeneration, Introduction to Hodge theory, SMF/AMS Texts and Monographs, vol 8., 96-145, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2002) |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Ogus, A., Vologodsky, V.: Nonabelian Hodge theory in characteristic $p$. Publ. Math. Inst. Hautes Études Sci. No. 106, 1–138 (2007) |
| [15] |
Schepler, D.: Logarithmic nonabelian Hodge theory in characteristic $p$. (2008). arXiv:0802.1977V1 |
| [16] |
Sheng, M., Zhang, Z.: On the decomposition theorem for intersection de Rham complexes (2019). arXiv:1904.06651 |
/
| 〈 |
|
〉 |