Space Mapping of Spline Spaces over Hierarchical T-meshes

Jingjing Liu , Fang Deng , Jiansong Deng

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 403 -438.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 403 -438. DOI: 10.1007/s40304-021-00258-3
Article

Space Mapping of Spline Spaces over Hierarchical T-meshes

Author information +
History +
PDF

Abstract

In this paper, we construct a bijective mapping between a biquadratic spline space over the hierarchical T-mesh and the piecewise constant space over the corresponding crossing-vertex-relationship graph (CVR graph). We propose a novel structure, by which we offer an effective and easy operative method for constructing the basis functions of the biquadratic spline space. The mapping we construct is an isomorphism. The basis functions of the biquadratic spline space hold the properties such as linear independence, completeness and the property of partition of unity, which are the same as the properties for the basis functions of piecewise constant space over the CVR graph. To demonstrate that the new basis functions are efficient, we apply the basis functions to fit some open surfaces.

Keywords

Spline spaces over T-meshes / Dimension / CVR graph / Space mapping / Basis functions

Cite this article

Download citation ▾
Jingjing Liu, Fang Deng, Jiansong Deng. Space Mapping of Spline Spaces over Hierarchical T-meshes. Communications in Mathematics and Statistics, 2023, 11(2): 403-438 DOI:10.1007/s40304-021-00258-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berdinsky D, Oh M, Kim T, Mourrain B. On the problem of instability in the dimension of a spline space over a T-mesh. Comput. Graph.. 2012, 36 5 507-513

[2]

Bernard M. On the dimension of spline spaces on planar T-meshes. Math. Comput.. 2014, 83 286 847-871

[3]

Bressan A. Some properties of LR-splines. Comput. Aided Geometr. Design. 2013, 30 778-794

[4]

Buffa A, Cho D, Sangalli G. Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods Appl. Mech. Engi.. 2010, 199 23–24 1437-1445

[5]

Deng J, Chen F, Feng Y. Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math.. 2006, 194 2 267-283

[6]

Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y. Polynomial splines over hierarchical T-meshes. Graph. Models. 2008, 70 4 76-86

[7]

Deng F, Zeng C, Meng W, Deng J. Bases of biquadratic polynomial spline spaces over hierarchical T-meshes. J. Comput. Math.. 2017, 35 1 91-120

[8]

Deng J, Chen F, Jin L. Dimensions of biquadratic spline spaces over T-meshes. J. Comput. Appl. Math.. 2013, 238 68-94

[9]

Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Comput. Aided Geometr. Design. 2013, 30 3 331-356

[10]

Feng Y, Zeng F, Deng J. Spline Functions and Approximaition Theory. 2013 London: USTC Press

[11]

Floater MS. Parameterization and smooth approximation of surface triangulations. Comput. Aided Geometr. Design. 1997, 14 3 231-250

[12]

Giannelli C, Jüttler B, Speleers H. THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geometr. Design. 2012, 29 7 485-498

[13]

Giannelli C, Jüttler B. Bases and dimensions of bivariate hierarchical tensor-product splines. J. Comput. Appl. Math.. 2013, 239 162-178

[14]

Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA. On linear independence of T-spline blending functions. Comput. Aided Geometr. Design. 2012, 29 1 63-76

[15]

Li X. On the instability in the dimension of spline space over particular T-meshes. Comput. Aided Geometr. Design. 2011, 28 7 420-426

[16]

Li X, Deng J. On the dimension of splines spaces over T-meshes with smoothing cofactor-conformality method. Comput. Aided Geometr. Design. 2016, 41 76-86

[17]

Mokriš D, Jüttler B. TDHB-splines: the truncated decoupled basis of hierarchical tensor-product splines. Comput. Aided Geometr. Design. 2014, 31 7–8 531-544

[18]

Mokriš D, Jüttler B, Giannelli C. On the completeness of hierarchical tensor-product B-splines. J. Comput. Appl. Math.. 2014, 271 53-70

[19]

Meng W, Deng J, Chen F. Dimension of spline spaces with highest order smoothness over hierarchical T-meshes. Comput. Aided Geometr. Design. 2013, 30 1 20-34

[20]

Patrizi F, Dokken T. Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes. Comput. Aided Geometr. Design. 2020, 2020 77

[21]

Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM Trans. Graph.. 2003, 22 3 477-484

[22]

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline simplification and local refinement. ACM Trans. Graph.. 2004, 23 3 276-283

[23]

Schumaker LL, Wang L. Approximation power of polynomial splines on T-meshes. Comput. Aided Geometr. Design. 2012, 29 8 599-612

[24]

Thanh NN, Li W. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach. Comput. Mech.. 2018, 62 6 1287-1309

[25]

Thanh NN, Li W, Huang J, Zhou K. An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems. Int. J. Numer. Methods Eng.. 2019, 120 2 209-230

[26]

Thanh NN, Zhou K. Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions. Int. J. Numer. Methods Eng.. 2017, 112 12 1777-1800

[27]

Toshniwala, D., Mourrain, B., Hughes, Thomas, J.R.: Polynomial spline spaces of non-uniform bi-degree on T-meshes: combinatorial bounds on the dimension. arXiv preprint arXiv:1903.05949 (2019)

[28]

Toshniwala D, Villamizar N. Dimension of polynomial splines of mixed smoothness on T-meshes. Comput. Aided Geometr. Design. 2020, 80 101880

[29]

Vuong A-V, Giannelli C, Jüttler B, Simeon B. A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2011, 200 49–52 3554-3567

[30]

Zeng C, Deng F, Li X, Deng J. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes. J. Comput. Appl. Math.. 2015, 287 162-178

[31]

Zeng C, Meng W, Deng F, Deng J. Dimensions of spline spaces over non-rectangular T-meshes. Adv. Comput. Math.. 2016, 42 6 1259-1286

Funding

NSF of China(11771420)

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/