On the Base Point Locus of Surface Parametrizations: Formulas and Consequences

David A. Cox , Sonia Pérez-Díaz , J. Rafael Sendra

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 757 -783.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 757 -783. DOI: 10.1007/s40304-021-00257-4
Article

On the Base Point Locus of Surface Parametrizations: Formulas and Consequences

Author information +
History +
PDF

Abstract

This paper shows that the multiplicity of the base point locus of a projective rational surface parametrization can be expressed as the degree of the content of a univariate resultant. As a consequence, we get a new proof of the degree formula relating the degree of the surface, the degree of the parametrization, the base point multiplicity and the degree of the rational map induced by the parametrization. In addition, we extend both formulas to the case of dominant rational maps of the projective plane and describe how the base point loci of a parametrization and its reparametrizations are related. As an application of these results, we explore how the degree of a surface reparametrization is affected by the presence of base points.

Keywords

Base point / Hilbert–Samuel multiplicity / Surface parametrization / Reparametrization / Parametrization degree / Surface degree

Cite this article

Download citation ▾
David A. Cox, Sonia Pérez-Díaz, J. Rafael Sendra. On the Base Point Locus of Surface Parametrizations: Formulas and Consequences. Communications in Mathematics and Statistics, 2022, 10(4): 757-783 DOI:10.1007/s40304-021-00257-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adkins WA, Hoffman JW, Wang HH. Equations of parametric surfaces with base points via syzygies. J. Symb. Comput.. 2005, 39 33-101

[2]

Busé L, Cox DA, D’Andrea C. Implicitization of surfaces in ${\mathbb{P}}^{3}$ in the presence of base points. J. Algebra Appl.. 2003, 2 189-214

[3]

Bruns W, Herzog J. Cohen–Macaulay Rings. 1998 Cambridge: Cambridge University Press

[4]

Caravantes J, Sendra JR, Sevilla D, Villarino C. On the existence of birational surjective parametrizations of affine surfaces. J. Algebra. 2018, 501 206-214

[5]

Chen F, Cox C, Liu Y. The $\mu $-basis and implicitization of a rational parametric surface. J. Symb. Comput.. 2005, 39 689-706

[6]

Conforto, F.: Le Superfici Razionali. Zanichelli Bologna (1939)

[7]

Cox, D.A., Little, J., O’Shea, D.: Ideals. Varieties and algorithms. In: Undergraduate Texts in Mathematics. Springer, New York (2015)

[8]

Cox, D.A.: Equations of parametric curves and surfaces via syzygies. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, Contemporary Mathematics. Vol. 286, pp. 1–20. AMS, Providence, RI (2001)

[9]

Cox, D.A.: Curves, surfaces and syzygies. In: Topics in Algebraic Geometry and Geometric Modeling, Contemporary Mathematics. Vol. 334, pp. 131–150. AMS, Providence, RI (2003)

[10]

Cox, D.A.: What is the Multiplicity of a Base Point? Talk at the XIV Coloquio Latinoamericano de Algebra in the Summer of 2001 in Cordoba, Argentina (2001). https://dacox.people.amherst.edu/

[11]

Fulton, W.: Intersection Theory I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. In: Folge A Series of Modern Surveys in Mathematics. Springer, Berlin (1984)

[12]

Harris J. Algebraic Geometry. A First Course. 1995 New York: Springer

[13]

Jia X, Shi X, Chen F. Survey on the theory and applications of $\mu $-bases for rational curves and surfaces. J. Comput. Appl. Math.. 2018, 329 2-23

[14]

Pérez-Díaz S, Sendra JR. Computation of the degree of rational surface parametrizations. J. Pure Appl. Algebra. 2004, 193 99-121

[15]

Pérez-Díaz S, Sendra JR. A Univariate resultant based implicitization algorithm for surfaces. J. Symb. Comput.. 2008, 43 118-139

[16]

Pérez-Díaz S, Sendra JR. Behavior of the fiber and the base points of parametrizations under projections. Math. Comput. Sci.. 2013, 7 167-184

[17]

Schicho J. A degree bound for the parameterization of a rational surface. J. Pure Appl. Algebra. 1999, 145 91-105

[18]

Schicho, J.: Simplification of surface parametrizations. In: ISSAC 2002: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 229–237. ACM Press, New York (2002)

[19]

Schicho J. The parametric degree of a rational surface. Math. Z.. 2006, 254 185-198

[20]

Sederberg, T.W.: Techniques for cubic algebraic surfaces I. In: Computer Graphics and Applications, IEEE 1.4 (199). pp. 14–25 (1990)

[21]

Sendra, J.R., Sevilla, D., Villarino C.: Covering of surfaces parametrized without projective base points. In: ISSAC 2014: Proceedings of the 2014 International Symposium on Symbolic and Algebraic computation, pp. 375–380. ACM Press, New York (2014)

[22]

Sendra JR, Sevilla D, Villarino C. Covering rational ruled surfaces. Math. Comput.. 2017, 86 308 2861-2875

[23]

Sendra, J.R., Winkler, F., Pérez-Díaz, S.: Rational algebraic curves: a computer algebra approach. In: Algorithms and Computation in Mathematics, Vol. 22. Springer, New York (2007)

[24]

Walker RJ. Algebraic Curves. 1950 Princeton: Princeton University Press

[25]

Wang D. A simple method for implicitizing rational curves and surfaces. J. Symb. Comput.. 2004, 38 899-914

[26]

Winkler F. Polynomials Algorithms in Computer Algebra. 1996 New York: Springer

[27]

Zheng, J., Sederberg, T.W., Chionh, E.-W., Cox, D.A.: Implicitizing rational surfaces with base points using the method of moving surfaces. In: Topics in Algebraic Geometry and Geometric Modeling, Contemporary Mathematics, Vol. 334, pp. 151–168. AMS, Providence RI (2003)

Funding

Ministerio de Ciencia, Innovación y Universidades(MTM2017-88796-P)

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/