Rigid Analytic p-Adic Simpson Correspondence for Line Bundles

Ziyan Song

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 739 -756.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 739 -756. DOI: 10.1007/s40304-021-00256-5
Article

Rigid Analytic p-Adic Simpson Correspondence for Line Bundles

Author information +
History +
PDF

Abstract

The p-adic Simpson correspondence due to Faltings (Adv Math 198(2):847–862, 2005) is a p-adic analogue of non-abelian Hodge theory. The following is the main result of this article: The correspondence for line bundles can be enhanced to a rigid analytic morphism of moduli spaces under certain smallness conditions. In the complex setting, Simpson shows that there is a complex analytic morphism from the moduli space for the vector bundles with integrable connection to the moduli space of representations of a finitely generated group as algebraic varieties. We give a p-adic analogue of Simpson’s result.

Keywords

Arithmetic algebraic geometry / p-Adic Hodge theory / Rigid geometry / Higgs bundles

Cite this article

Download citation ▾
Ziyan Song. Rigid Analytic p-Adic Simpson Correspondence for Line Bundles. Communications in Mathematics and Statistics, 2022, 10(4): 739-756 DOI:10.1007/s40304-021-00256-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergamaschi, F.: Abelian varieties and $p$-divisible groups. https://www.math.mcgill.ca/darmon/courses/12-13/sem-iovita/Bergamaschi-Seminarelovita.pdf

[2]

Bosch, S.: Lectures on formal and rigid geometry, Lecture Notes in Math. 2105. Springer (2014)

[3]

Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis, a systematic approach to rigid analytic geometry. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)

[4]

Deninger C, Werner A. Vector bundles on $p$-adic curves and parallel transport. Ann. Sci. Éc. Norm. Supér.. 2005, 4 38 553-597

[5]

Deninger C, Werner A. Line bundles and $p$-adic characters, Number Fields and Function Fields-Two Parallel Worlds, Progress in Mathematics. 2005 Boston: Birkhauser

[6]

Faltings G. A $p$-adic Simpson correspondence. Adv. Math.. 2005, 198 2 847-862

[7]

Fargues L. Groupes analytiques rigides $p$-divisibles. Math. Ann.. 2019, 374 723-791

[8]

Gerard van der Geer and Ben Moonen. Abelian varieties. Book in preparation 71, 2007. http://page.mi.fu-berlin.de/elenalavanda/bmoonen.pdf

[9]

Heuer, B.: Line bundles on rigid spaces in the $v$-topology. arxiv preprint arXiv:2012.07918v2 (2021)

[10]

Marie-Claude Durix, Prolongement de la function exponentielle en dehors de son disque de convergence, Séminaire Delange-Pisot-Poitou:1966/67, Théorie des Nombres, Fasc.1, Exp.1, 12pp. (Secrétariat mathématique, Paris, 1968)

[11]

Robert, A. M.: A course in $p$-adic analysis, Graduate Text in Math. 198. Springer, New York (2000)

[12]

Simpson CT. Higgs bundles and local systems. Publ. Math. IHÉS. 1992, 75 5-95

[13]

Simpson CT. Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHÉS. 1994, 79 47-129

[14]

Simpson CT. Moduli of representations of the fundamental group of a smooth projective variety II. Publ. Math. IHÉS. 1994, 80 5-79

Funding

National Natural Science Foundation of China(11721101)

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/