Rigid Analytic p-Adic Simpson Correspondence for Line Bundles
Ziyan Song
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 739 -756.
Rigid Analytic p-Adic Simpson Correspondence for Line Bundles
The p-adic Simpson correspondence due to Faltings (Adv Math 198(2):847–862, 2005) is a p-adic analogue of non-abelian Hodge theory. The following is the main result of this article: The correspondence for line bundles can be enhanced to a rigid analytic morphism of moduli spaces under certain smallness conditions. In the complex setting, Simpson shows that there is a complex analytic morphism from the moduli space for the vector bundles with integrable connection to the moduli space of representations of a finitely generated group as algebraic varieties. We give a p-adic analogue of Simpson’s result.
Arithmetic algebraic geometry / p-Adic Hodge theory / Rigid geometry / Higgs bundles
| [1] |
Bergamaschi, F.: Abelian varieties and $p$-divisible groups. https://www.math.mcgill.ca/darmon/courses/12-13/sem-iovita/Bergamaschi-Seminarelovita.pdf |
| [2] |
Bosch, S.: Lectures on formal and rigid geometry, Lecture Notes in Math. 2105. Springer (2014) |
| [3] |
Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis, a systematic approach to rigid analytic geometry. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984) |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Gerard van der Geer and Ben Moonen. Abelian varieties. Book in preparation 71, 2007. http://page.mi.fu-berlin.de/elenalavanda/bmoonen.pdf |
| [9] |
Heuer, B.: Line bundles on rigid spaces in the $v$-topology. arxiv preprint arXiv:2012.07918v2 (2021) |
| [10] |
Marie-Claude Durix, Prolongement de la function exponentielle en dehors de son disque de convergence, Séminaire Delange-Pisot-Poitou:1966/67, Théorie des Nombres, Fasc.1, Exp.1, 12pp. (Secrétariat mathématique, Paris, 1968) |
| [11] |
Robert, A. M.: A course in $p$-adic analysis, Graduate Text in Math. 198. Springer, New York (2000) |
| [12] |
|
| [13] |
|
| [14] |
|
/
| 〈 |
|
〉 |