$F^{\alpha }$-family" /> $F^{\alpha }$-family" /> $F^{\alpha }$-family" />

Quantile-Based Shannon Entropy for Record Statistics

Vikas Kumar , Bhawna Dangi

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 283 -306.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 283 -306. DOI: 10.1007/s40304-021-00248-5
Article

Quantile-Based Shannon Entropy for Record Statistics

Author information +
History +
PDF

Abstract

The quantile-based entropy measures possess some unique properties than their distribution function approach. The present communication deals with the study of the quantile-based Shannon entropy for record statistics. In this regard a generalized model is considered for which cumulative distribution function or probability density function does not exist and various examples are provided for illustration purpose. Further we consider the dynamic versions of the proposed entropy measure for record statistics and also give a characterization result for that. At the end, we study $F^{\alpha }$-family of distributions for the proposed entropy measure.

Keywords

Shannon entropy / Record value / Quantile function / Quantile entropy / $F^{\alpha }$-family')">$F^{\alpha }$-family

Cite this article

Download citation ▾
Vikas Kumar, Bhawna Dangi. Quantile-Based Shannon Entropy for Record Statistics. Communications in Mathematics and Statistics, 2023, 11(2): 283-306 DOI:10.1007/s40304-021-00248-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbasnejad M, Arghami NR. Renyi entropy properties of order statistics. Commun. Stat. Theory Methods. 2011, 40 40-52

[2]

Abramowitz M, Stegun IA. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. 1970 New York: Dover

[3]

Ahmadi J, Balakrishnan N. Preservation of some reliability properties by certain record statistics. Stat. J. Theoret. Appl. Stat.. 2005, 39 4 347-354

[4]

Ahsanullah M. Record Values-Theory and Applications. 2004 New York: University Press of America Inc.

[5]

Arnold BC, Balakrishnan N, Nagaraja HN. A First Course in Order Statistics. 1992 New York: Wiley

[6]

Baratpur S, Ahmadi J, Arghami NR. a). Entropy properties of record statistics. Stat. Pap.. 2007, 48 197-213

[7]

Baratpour S, Ahmadi J, Arghami NR. b). Some characterizations based on entropy of order statistics and record values. Commun. Stat. Theory Methods. 2007, 36 47-57

[8]

Chandler KN. The distribution and frequency of record values. J. R. Stat. Soc.. 1952, 14 B 220-228

[9]

Chaudhry MA. On a family of logarithmic and exponential integrals occurring in probability and reliability theory. J. Austral. Math. Soc. Ser. B. 1994, 35 469-478

[10]

Cook, J. D.: Determining distribution parameters from quantiles. biostats.bepress.com (2010)

[11]

David HA, Nagaraja HN. Order Statistics. 2003 Hoboken: Wiley

[12]

Di Crescenzo A, Longobardi M. Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Probab.. 2002, 39 434-440

[13]

Ebrahimi N. How to measure uncertainty in the residual life time distribution. Sankhya A. 1996, 58 48-56

[14]

Gilchrist W. Statistical Modelling with Quantile Functions. 2000 Boca Raton: Chapman and Hall/CRC

[15]

Gradshteyn I, Ryzhik I. Tables of Integrals, Series, and Products. 1980 New York: Academic Press

[16]

Gupta RC, Kirmani SNUA. Characterization based on convex conditional mean function. J. Stat. Plan. Inference. 2008, 138 4 964-970

[17]

Hankin RKS, Lee A. A new family of non-negative distributions. Austral. N. Z. J. Stat.. 2006, 48 67-78

[18]

Jeffrey A. Mathematical Formulas and Integrals. 1995 San Diego: Academic Press

[19]

Kamps U. Reliability propertiof record values from non-identically distributed random variables. Commun. Stat. Theory Methods. 1994, 23 7 2102-2112

[20]

Kamps U. A concept of generalized order statistics. J. Stat. Plan. Inference. 1995, 48 1 1-23

[21]

Kayal S, Tripathy MR. A quantile-based Tsallis-$\alpha $ divergence. Physica A. 2018, 492 496-505

[22]

Kumar V. Generalized entropy measure in record values and its applications. Stat. Probab. Lett.. 2015, 106 46-51

[23]

Kumar V. Some results on Tsallis entropy measure and k-record values. Physica A Stat. Mech. Appl.. 2016, 462 667-673

[24]

Kumar V. Rekha: quantile approach of dynamic generalized entropy (divergence) measure. Statistica. 2018, 78 2

[25]

Madadi M, Tata M. Shannon information in record data. Metrika. 2011, 74 11-31

[26]

Madadi M, Tata M. Shannon information In k-records. Commun. Stat. Theory Methods. 2014, 43 15 3286-3301

[27]

Nair NU, Sankaran PG, Balakrishnan N. Quantile-Based Reliability Analysis. 2013 New York: Springer

[28]

Raqab MZ, Awad AM. A note on characterization based on Shannon entropy of record statistics. Statistics. 2001, 35 411-413

[29]

Sankaran PG, Sunoj SM. Quantile-based cumulative entropies. Commun. Stat. Theory Methods. 2017, 46 2 805-814

[30]

Shannon CE. A mathematical theory of communication. Bell Syst. Tech. J.. 1948, 279423 623-656

[31]

Sunoj SM, Sankaran PG. Quantile based entropy function. Stat. Probab. Lett.. 2012, 82 1049-1053

[32]

Sunoj SM, Sankaran PG, Nanda AK. Quantile based entropy function in past lifetime. Stat. Probab. Lett.. 2013, 83 1 366-372

[33]

Tarsitano A. Estimation of the Generalized Lambda Distribution Parameters for Grouped Data. Commun. Stat. Theory Methods. 2005, 34 8 1689-1709

[34]

Van Staden, P.J., Loots, M.R.: L-moment estimation for the generalized lambda distribution. In: Third Annual ASEARC Conference, New Castle, Australia (2009)

[35]

Zahedi H, Shakil M. Properties of entropies of record values in reliability and life testing context. Commun. Stat. Theory Methods. 2006, 35 6 997-1010

[36]

Zarezadeh S, Asadi M. Results on residual Renyi entropy of order statistics and record values. Inf. Sci.. 2010, 180 21 4195-4206

Funding

Science and Engineering Research Board New Delhi(ECR/2017/001987)

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/