Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein–Uhlenbeck Process

Chunhao Cai , Qinghua Wang , Weilin Xiao

Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 229 -255.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 11 ›› Issue (2) : 229 -255. DOI: 10.1007/s40304-021-00245-8
Article

Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein–Uhlenbeck Process

Author information +
History +
PDF

Abstract

In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, we propose a practical estimator associated with the LSE of the drift parameter of mixed sub-fractional Ornstein–Uhlenbeck process, and illustrate the asymptotical properties according to our method of simulation when the Hurst parameter $H>1/2$.

Keywords

Sub-fractional Brownian motion / Ornstein–Uhlenbeck process / Least square estimator / Malliavin calculus

Cite this article

Download citation ▾
Chunhao Cai, Qinghua Wang, Weilin Xiao. Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein–Uhlenbeck Process. Communications in Mathematics and Statistics, 2023, 11(2): 229-255 DOI:10.1007/s40304-021-00245-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gatheral J, Jaisson T, Rosenbaum M. Volatility is rough. Quant. Finance. 2018, 18 6 933-949

[2]

Euch O, Rosenbaum M. Perfect hedging under rough Heston models. Ann. Appl. Probab.. 2018, 28 6 3813-3856

[3]

Euch O, Rosenbaum M. The characteristic function of rough Heston models. Math. Finance. 2019, 29 1 3-38

[4]

Euch O, Fukasawa M, Rosenbaum M. The microstructural foundations of leverage effect and rough volatility. Finance Stoch.. 2018, 22 2 241-280

[5]

Liu J, Li L, Yan L. Sub-fractional model for credit risk pricing. Int. J. Nonlinear Sci. Numer. Simul.. 2010, 11 4 231-236

[6]

Morozewicz, A., Filatova, D.: On the simulation of sub-fractional Brownian motion. In: 20th International Conference on Methods and Models in Automation and Robotics (2015)

[7]

Cai C, Chigansky P, Kleptsyna M. Mixed Gaussian process: a filtering approach. Ann. Probab.. 2016, 44 4 3032-3075

[8]

El Machkouri M, Es-Sebaiy K, Ouknine Y. Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc.. 2016, 45 329-341

[9]

Zili M. Mixed sub-fractional Brownian motion. Random Oper. Stoch. Equ.. 2013, 22 3 163-178

[10]

Paxson V. Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic. ACM SIGCOMM Comput. Commun. Rev.. 1997, 27 5 5-18

[11]

Nualart D. The Malliavin Calculus and Related Topics. 2006 2 Berlin: Springer

[12]

Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Application. 2008 Berlin: Springer

[13]

Chigansky P, Kleptsyna M. Statistical analysis of mixed fractional Ornstein–Uhlenbeck process. Theory Probab. Appl.. 2018, 63 3 500-519

[14]

Hu Y, Nualart D. Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett.. 2010, 80 1030-1038

[15]

Hu Y, Nualart D, Zhou H. Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process.. 2019, 22 111-142

[16]

Veillette M, Taqqu M. Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli. 2013, 19 3 982-1005

[17]

Cheridito P, Kawaguchi H, Maejima M. Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab.. 2003, 8 1-14

[18]

Chen Y, Hu Y, Wang Z. Parameter estimation of complex fractional Ornstein–Uhlenbeck processes with fractional noise, ALEA. Lat. Am. J. Probab. Math. Stat.. 2017, 14 613-629

[19]

Hu Y. Analysis on Gaussian Process. 2017 Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd.,

[20]

Nualart D, Ortiz-Latorre S. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl.. 2008, 118 614-628

Funding

Shanghai University of Finance and Economics(2020110294)

National Natural Science Foundation of China(71871202)

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/