D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors

Xin Liu , Rong-Xian Yue , Kashinath Chatterjee

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 669 -679.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 669 -679. DOI: 10.1007/s40304-021-00244-9
Article

D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors

Author information +
History +
PDF

Abstract

This paper investigates the optimal design problem for the prediction of the individual parameters in hierarchical linear models with heteroscedastic errors. An equivalence theorem is established to characterize D-optimality of designs for the prediction based on the mean squared error matrix. The admissibility of designs is also considered and a sufficient condition to simplify the design problem is obtained. The results obtained are illustrated in terms of a simple linear model with random slope and heteroscedastic errors.

Keywords

D-optimal design / Heteroscedasticity / Mean squared error matrix / Mixed-effect model / Equivalence theorem / Admissibility

Cite this article

Download citation ▾
Xin Liu, Rong-Xian Yue, Kashinath Chatterjee. D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors. Communications in Mathematics and Statistics, 2022, 10(4): 669-679 DOI:10.1007/s40304-021-00244-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang FC. $D$-optimal designs for weighted polynomial regression—a functional-algebraic approach. Statist. Sinica. 2005, 15 153-163

[2]

Cheng J, Yue R-X, Liu X. Optimal designs for random coefficient regression models with heteroscedastic errors. Commun. Statist. Theory Meth.. 2013, 42 2798-2809

[3]

Debusho LK, Haines LM. $V$-optimal and $D$-optimal population designs for the simple linear regression model with a random intercept term. J. Stat. Plan. Infer.. 2008, 138 1116-1130

[4]

Debusho LK, Haines LM. $D$- and $V$-optimal population designs for the quadratic regression model with a random intercept term. J. Stat. Plan. Infer.. 2011, 141 889-898

[5]

Fedorov VV, Hackl P. Model-Oriented Design of Experiments. 1997 New York: Springer

[6]

He L, He DJ. $R$-optimal designs for individual prediction in random coefficient regression models. Stat. Probab. Lett.. 2020, 159 108684

[7]

Liu X, Yue R-X, Chatterjee K. Geometric characterization of D-optimal designs for random coefficient regression models. Stat. Probab. Lett.. 2020, 159 108696

[8]

Kiefer J. General equivalence theory for optimum designs (approximate theory). Ann. Stat.. 1974, 2 849-879

[9]

Pilz J. Bayesian Estimation and Experimental Design in Linear Regression Models. 1983 Leipzig: Teubner

[10]

Prus M, Schwabe R. Optimal designs for the prediction of individual parameters in hierarchical models. J. Roy. Stat. Soc. Ser. B. 2016, 78 175-191

[11]

Prus M., Schwabe, R.: Interpolation and extrapolation in random coefficient regression models: optimal design for prediction. In: mODa 11—Advances in Model-Oriented Design and Analysis, Contributions to Statistics, pp. 209–216 (2016)

[12]

Prus M. Various optimality criteria for the prediction of individual response curves. Stat. Probab. Lett.. 2019, 146 36-41

[13]

Prus M. Optimal designs for minimax-criteria in random coefficient regression models. Stat. Papers. 2019, 60 465-478

[14]

Pukelsheim F. Optimal Design of Experiments. 1993 New York: Wiley

[15]

Schmelter T. The optimality of single-group designs for certain mixed models. Metrika. 2007, 65 183-193

[16]

Schmelter T. Consideration on group-wise identical designs for linear mixed models. J. Stat. Plan. Infer.. 2007, 137 4003-4010

[17]

Silvey SD. Optimal Design. 1980 London: Chapman and Hall

Funding

Innovative Research Group Project of the National Natural Science Foundation of China(11871143)

National Natural Science Foundation of China(11971318)

Shanghai Rising-Star Program(20QA1407500)

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/