Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type

Fan Wang , Ziyi He , Dachun Yang , Wen Yuan

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 483 -542.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (3) : 483 -542. DOI: 10.1007/s40304-021-00243-w
Article

Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type

Author information +
History +
PDF

Abstract

In this article, the authors introduce the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and Weiss, and discuss their relations with Besov and Triebel–Lizorkin spaces. As an application, the authors establish the difference characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. A major novelty of this article is that all results presented in this article get rid of the dependence on the reverse doubling assumption of the considered measure of the underlying space ${{\mathcal {X}}}$ via using the geometrical property of ${{\mathcal {X}}}$ expressed by its dyadic reference points, dyadic cubes, and the (local) lower bound. Moreover, some results when $p\le 1$ but near to 1 are new even when ${{\mathcal {X}}}$ is an RD-space.

Keywords

Space of homogeneous type / Calderón reproducing formula / Besov space / Triebel–Lizorkin space / Lipschitz-type space / Difference

Cite this article

Download citation ▾
Fan Wang, Ziyi He, Dachun Yang, Wen Yuan. Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type. Communications in Mathematics and Statistics, 2022, 10(3): 483-542 DOI:10.1007/s40304-021-00243-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarado R, Mitrea M. Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. A Sharp Theory. 2015 Cham: Springer

[2]

Alvarado, R., Górka, H., Hajłasz, P.: Sobolev embedding for $M^{1,p}$ spaces is equivalent to a lower bound of the measure. J. Funct. Anal. 279, 108628, 39 pp (2020)

[3]

Alvarado, R., Wang, F., Yang, D., Yuan, W.: Pointwise characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. (Submitted)

[4]

Auscher P, Hytönen T. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal.. 2013, 34 266-296

[5]

Besov OV, Il’in VP, Nikol’skiĭ SM. Integralnye Predstavleniya Funktsii i Teoremy Vlozheniya. 1996 2 Moscow: Fizmatlit “Nauka”

[6]

Bui TA, Duong XT. Sharp weighted estimates for square functions associated to operators on spaces of homogeneous type. J. Geom. Anal.. 2020, 30 874-900

[7]

Bui TA, Duong XT, Ly FK. Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type. Trans. Am. Math. Soc.. 2018, 370 7229-7292

[8]

Bui, T.A., Duong, X.T., Ky, L.D.: Hardy spaces associated to critical functions and applications to $T1$ theorems. J. Fourier Anal. Appl. 26, Article number 27, 67 pp (2020)

[9]

Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications. J. Funct. Anal. 278, 108423. 55 pp (2020)

[10]

Coifman RR, Weiss G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières. 1971 Berlin: Springer

[11]

Coifman RR, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc.. 1977, 83 569-645

[12]

Deng D, Han Y. Harmonic Analysis on Spaces of Homogeneous Type. With a Preface by Yves Meyer. 2009 Berlin: Springer

[13]

Duong XT, Yan L. Hardy spaces of spaces of homogeneous type. Proc. Am. Math. Soc.. 2003, 131 3181-3189

[14]

Fu X, Ma T, Yang D. Real-variable characterizations of Musielak–Orlicz–Hardy spaces on spaces of homogeneous type. Ann. Acad. Sci. Fenn. Math.. 2020, 45 343-410

[15]

Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. vol. 338, pp. 143–172. Amer. Math. Soc., Providence (2003)

[16]

Grigor’yan A, Hu J, Lau K. Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations. Trans. Am. Math. Soc.. 2003, 355 2065-2095

[17]

Grafakos L, Liu L, Yang D. Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand.. 2009, 104 296-310

[18]

Grafakos L, Liu L, Maldonado D, Yang D. Multilinear analysis on metric spaces. Diss. Math.. 2014, 497 1-121

[19]

Han Y, Yang D. New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin spaces on homogeneous type spaces and fractals. Diss. Math. (Rozprawy Mat.). 2002, 403 1-102

[20]

Han Y, Yang D. Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces. Studia Math.. 2003, 156 67-97

[21]

Han Y, Lu S, Yang D. Inhomogeneous Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. Approx. Theory Appl. (N. S.). 1999, 15 3 37-65

[22]

Han Y, Müller D, Yang D. Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr.. 2006, 279 1505-1537

[23]

Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal., Art. ID 893409, 1–250 (2008)

[24]

Han Y, Han Y, Li J. Criterion of the boundedness of singular integrals on spaces of homogeneous type. J. Funct. Anal.. 2016, 271 3423-3464

[25]

Han Y, Han Y, Li J. Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss. Sci. China Math.. 2017, 60 2199-2218

[26]

Han Y, Li J, Ward LA. Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl. Comput. Harmon. Anal.. 2018, 45 120-169

[27]

Han Y, Han Y, He Z, Li J, Pereyra C. Geometric characterizations of embedding theorems: for Sobolev, Besov, and Triebel–Lizorkin spaces on spaces of homogeneous type—via orthonormal wavelets. J. Geom. Anal.. 2020

[28]

He Z, Han Y, Li J, Liu L, Yang D, Yuan W. A complete real-variable theory of Hardy spaces on spaces of homogeneous type. J. Fourier Anal. Appl.. 2019, 25 2197-2267

[29]

He Z, Liu L, Yang D, Yuan W. New Calderón reproducing formulae with exponential decay on spaces of homogeneous type. Sci. China Math.. 2019, 62 283-350

[30]

He Z, Wang F, Yang D, Yuan W. Wavelet characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Appl. Comput. Harmon. Anal.. 2021, 54 176-226

[31]

He, Z., Yang, D., Yuan, W.: Real-variable characterizations of local Hardy spaces on spaces of homogeneous type. Math. Nachr. 294, 900–955 (2021)

[32]

Hytönen T, Kairema A. Systems of dyadic cubes in a doubling metric space. Colloq. Math.. 2012, 126 1-33

[33]

Hytönen T, Tapiola O. Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes. J. Approx. Theory. 2014, 185 12-30

[34]

Jonsson A. Besov spaces on closed subsets of ${\mathbb{R}}^n$. Trans. Am. Math. Soc.. 1994, 341 355-370

[35]

Jonsson A. Brownian motion on fractals and function spaces. Math. Z.. 1996, 222 495-504

[36]

Jonsson, A., Wallin, H.: Function spaces on subsets of ${\mathbb{R}}^n$. Math. Reports, vol. 2. Harwood Academic Publ., London (1984)

[37]

Jonsson A, Wallin H. Boundary value problems and Brownian motion on fractals. Chaos Solitons Fractals. 1997, 8 191-205

[38]

Koskela P, Yang D, Zhou Y. A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions. J. Funct. Anal.. 2010, 258 2637-2661

[39]

Koskela P, Yang D, Zhou Y. Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math.. 2011, 226 3579-3621

[40]

Müller D, Yang D. A difference characterization of Besov and Triebel–Lizorkin spaces on RD-spaces. Forum Math.. 2009, 21 259-298

[41]

Nakai E, Yabuta K. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon.. 1997, 46 15-28

[42]

Song L, Yan L. Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J. Evol. Equ.. 2018, 18 221-243

[43]

Stein EM. Singular Integrals and Differentiability Properties of Functions. 1970 Princeton: Princeton University Press

[44]

Triebel H. Theory of Function Spaces. 1983 Basel: Birkhäuser Verlag

[45]

Triebel H. Theory of Function Spaces. 1992 Basel: Birkhäuser Verlag

[46]

Triebel H. Theory of Function Spaces. 2006 Basel: Birkhäuser Verlag

[47]

Wallin, H.: New and old function spaces. In: Function Spaces and Applications (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 99–114. Springer, Berlin (1988)

[48]

Wang, F., Han, Y., He, Z., Yang, D.: Besov and Triebel–Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón–Zygmund operators. Diss. Math. (2021). https://doi.org/10.4064/dm821-4-2021

[49]

Yang D. Frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type and their applications. Georgian Math. J.. 2002, 9 567-590

[50]

Yang D. Localization principle of Triebel–Lizorkin spaces on spaces of homogeneous type. Rev. Mat. Complut.. 2004, 17 229-249

[51]

Yang D. Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations. Studia Math.. 2005, 167 63-98

[52]

Yang D. Some new Triebel–Lizorkin spaces on spaces of homogeneous type and their frame characterizations. Sci. China Ser. A. 2005, 48 12-39

[53]

Yang D, Lin Y. Spaces of Lipschitz type on metric spaces and their applications. Proc. Edinb. Math. Soc. (2). 2004, 47 709-752

[54]

Yang S, Yang D. Atomic and maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type. Collect. Math.. 2019, 70 197-246

[55]

Yang D, Zhou Y. Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications. Math. Ann.. 2010, 346 307-333

[56]

Yang D, Zhou Y. New properties of Besov and Triebel–Lizorkin spaces on RD-spaces. Manuscripta Math.. 2011, 134 59-90

[57]

Zhuo C, Sawano Y, Yang D. Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math.. 2016, 520 1-74

[58]

Zhou X, Yang D, He Z. A real-variable theory of Hardy–Lorentz spaces on spaces of homogeneous type. Anal. Geom. Metr. Spaces. 2020, 8 182-260

Funding

National Key Research and Development Program of China(2020YFA0712900)

National Natural Science Foundation of China(11971058, 12071197 and 11871100)

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/