On Finite Non-Solvable Groups Whose Gruenberg–Kegel Graphs are Isomorphic to the Paw

A. S. Kondrat’ev , N. A. Minigulov

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 653 -667.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 653 -667. DOI: 10.1007/s40304-021-00242-x
Article

On Finite Non-Solvable Groups Whose Gruenberg–Kegel Graphs are Isomorphic to the Paw

Author information +
History +
PDF

Abstract

The Gruenberg–Kegel graph (or the prime graph) $\varGamma (G)$ of a finite group G is a graph, in which the vertex set is the set of all prime divisors of the order of G and two different vertices p and q are adjacent if and only if there exists an element of order pq in G. The paw is a graph on four vertices whose degrees are 1, 2, 2, 3. We consider the problem of describing finite groups whose Gruenberg–Kegel graphs are isomorphic as abstract graphs to the paw. For example, the Gruenberg–Kegel graph of the alternating group $A_{10}$ of degree 10 is isomorphic as abstract graph to the paw. In this paper, we describe finite non-solvable groups G whose Gruenberg–Kegel graphs are isomorphic as abstract graphs to the paw in the case when G has no elements of order 6 or the vertex of degree 1 of $\varGamma (G)$ divides the order of the solvable radical of G.

Keywords

Finite group / Non-solvable group / Gruenberg–Kegel graph / The paw

Cite this article

Download citation ▾
A. S. Kondrat’ev, N. A. Minigulov. On Finite Non-Solvable Groups Whose Gruenberg–Kegel Graphs are Isomorphic to the Paw. Communications in Mathematics and Statistics, 2022, 10(4): 653-667 DOI:10.1007/s40304-021-00242-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alekseeva, O.A., Kondrat’ev, A.S.: Finite groups whose prime graphs do not contain triangles. I. Proc. Steklov Inst. Math. 295(Suppl. 1), 11–20 (2016)

[2]

Alekseeva, O.A., Kondrat’ev, A.S.: Finite groups whose prime graphs do not contain triangles. II. Proc. Steklov Inst. Math. 296(Suppl. 1), 19–30 (2017)

[3]

Aschbacher M. Finite group theory. 1986 Cambridge: Cambridge University Press

[4]

Bray JN, Holt DF, Roney-Dougal CM. The maximal subgroups of the low-dimensional finite classical groups. 2013 Cambridge: Cambridge University Press

[5]

Conway JH . Atlas of finite groups. 1985 Oxford: Clarendon Press

[6]

Dolfi S, Jabara E, Lucido MS. C55-groups. Siberian Math. J.. 2004, 45 6 1053-1062

[7]

Fleischmann P, Lempken W, Tiep PH. Finite $p^{\prime }$-semiregular groups. J. Algebra. 1997, 188 2 547-579

[8]

Gorenstein D. Finite groups. 1968 New York: Harper and Row

[9]

Gorshkov IB, Maslova NV. Finite almost simple groups with Gruenberg-Kegel graphs as for solvable groups. Algebra Log.. 2018, 57 2 115-129

[10]

Gruber A, Keller TM, Lewis ML, Naughton K, Strasser B. A characterization of the prime graphs of solvable groups. J. Algebra. 2015, 442 397-422

[11]

Hartley B, Meixner T. Finite soluble groups containing an element of prime order whose centralizer is small. Arch. Math.. 1981, 36 3 211-213

[12]

Herzog M. On finite simple groups of order divisible by three primes only. J. Algebra. 1968, 10 3 383-388

[13]

Higman G. Odd characterizations of finite simple groups: Lecture Notes. 1968 Ann Arbor: Univ. Michigan

[14]

Huppert B. Endliche Gruppen I. 1967 Berlin: Springer-Verlag

[15]

Huppert B, Blackburn N. Finite groups II. 1982 Berlin: Springer-Verlag

[16]

Jansen C . An atlas of Brauer characters. 1995 Oxford: Clarendon Press

[17]

Kondrat’ev, A.S.: Finite groups with prime graph as in the group $Aut(J_2)$. Proc. Steklov Inst. Math. 283(Suppl. 1), 1–8 (2013)

[18]

Kondrat’ev, A.S.: Finite groups that have the same prime graph as the group $A_{10}$. Proc. Steklov Inst. Math. 285(Suppl. 1), 1–9 (2014)

[19]

Kondrat’ev AS. Finite groups with given properties of their prime graphs. Algebra Log.. 2016, 55 1 77-82

[20]

Kondrat’ev AS, Khramtsov IV. On finite triprimary groups. Trudy Inst. Mat. Mech. UrO RAN. 2010, 16 3 150-158

[21]

Kondrat’ev AS, Khramtsov IV. On finite tetraprimary groups. Proc. Steklov Inst. Math.. 2012, 279 Suppl. 1 43-61

[22]

Kondrat’ev AS, Minigulov NA. Finite groups without elements of order six. Math. Notes. 2018, 104 5 696-701

[23]

Kondrat’ev AS, Minigulov NA. Finite almost simple groups whose Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg-Kegel graph of the alternating group $A_{10}$. Siberian Electr. Math. Rep.. 2018, 15 1378-1382

[24]

Kondrat’ev AS, Osinovskaya AA, Suprunenko ID. On the behavior of elements of prime order from Singer cycles in representations of special linear groups. Proc. Steklov Inst. Math.. 2014, 285 Suppl. 1 108-115

[25]

Martineau RP. On $2$-modular representations of the Suzuki groups. Am. J. Math.. 1972, 94 55-72

[26]

Maslova NV, Pagon D. On the realizability of a graph as the Gruenberg-Kegel graph of a finite group. Siberian Electr. Math. Rep.. 2016, 13 89-100

[27]

Mazurov VD. Characterizations of finite groups by sets of orders of their elements. Algebra Log.. 1997, 36 1 23-32

[28]

Minigulov NA. Finite almost simple 4-primary groups with connected Gruenberg-Kegel graph. Proc. Steklov Inst. Math.. 2020, 309 Suppl. 1 93-97

[29]

Stewart WB. Groups having strongly self-centralizing 3-centralizers. Proc. London Math. Soc.. 1973, 426 4 653-680

[30]

Suzuki M. On a class of doubly transitive groups. Annl. Math.. 1962, 75 1 105-145

[31]

Williams JS. Prime graph components of finite groups. J. Algebra. 1981, 69 2 487-513

[32]

Zavarnitsine AV. Recognition of the simple groups $L_3(q)$ by element orders. J. Group Theory. 2004, 7 1 81-97

[33]

Zavarnitsine AV. Recognition of finite groups by the prime graph. Algebra Log.. 2006, 45 4 220-231

[34]

Zavarnitsine AV. Finite groups with a five-component prime graph. Sib. Math. J.. 2013, 54 1 40-46

[35]

Zinov’eva MR, Kondrat’ev AS. Finite almost simple groups with prime graphs all of whose connected components are cliques. Proc. Steklov Inst. Math.. 2016, 295 Suppl. 1 178-188

[36]

Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsch. Math. Phys. 3(Suppl. 1), 265–284 (1892)

Funding

Russian Science Foundation(19-17-10067)

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/