Triply Factorised Groups and the Structure of Skew Left Braces

A. Ballester-Bolinches , R. Esteban-Romero

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (2) : 353 -370.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (2) : 353 -370. DOI: 10.1007/s40304-021-00239-6
Article

Triply Factorised Groups and the Structure of Skew Left Braces

Author information +
History +
PDF

Abstract

The algebraic structure of skew left brace has proved to be useful as a source of set-theoretic solutions of the Yang–Baxter equation. We study in this paper the connections between left and right $\pi $-nilpotency and the structure of finite skew left braces. We also study factorisations of skew left braces and their impact on the skew left brace structure. As a consequence of our study, we define a Fitting-like ideal of a left brace. Our approach depends strongly on a description of a skew left brace in terms of a triply factorised group obtained from the action of the multiplicative group of the skew left brace on its additive group.

Keywords

Skew left brace / Trifactorised group / Triply factorised group / Left nilpotent skew left brace / Right nilpotent skew left brace / Ideal / Left Fitting ideal / Factorised skew left brace

Cite this article

Download citation ▾
A. Ballester-Bolinches, R. Esteban-Romero. Triply Factorised Groups and the Structure of Skew Left Braces. Communications in Mathematics and Statistics, 2022, 10(2): 353-370 DOI:10.1007/s40304-021-00239-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acri E, Lutowski R, Vendramin L. Rectractability of solutions to the Yang–Baxter equation and $p$-nilpotency of skew braces. Int. J. Algebra Comput.. 2020, 30 01 91-115

[2]

Amberg B, Franciosi S, de Giovanni F. Products of Groups. Oxford Mathematical Monographs. 1992 New York: Oxford Science Publications, The Clarendon Press, Oxford University Press

[3]

Bardakov VG, Neshchadim MV, Yadav MK. Computing skew left braces of small orders. Int. J. Algebra Comput.. 2020, 30 4 839-851

[4]

Byott NP. Solubility criteria for Hopf–Galois structures. N. Y. J. Math.. 2015, 21 883-903

[5]

Cedó F, Smoktunowicz A, Vendramin L. Skew left braces of nilpotent type. Proc. Lond. Math. Soc.. 2019, 118 6 1367-1392

[6]

Doerk K, Hawkes T. Finite Soluble Groups. De Gruyter Expositions in Mathematics. 1992 Berlin: Walter de Gruyter & Co.

[7]

Drinfeld, V.G.: On some unsolved problems in quantum group theory. In: Kulish, P.P. (ed.) Quantum Groups. Proceedings of Workshops Held in the Euler International Mathematical Institute, Leningrad, fall 1990, volume 1510 of Lecture Notes in Mathematics, pp. 1–8. Springer, Berlin (1992)

[8]

Guarnieri L, Vendramin L. Skew-braces and the Yang–Baxter equation. Math. Comput.. 2017, 86 307 2519-2534

[9]

Huppert, B.: Endliche Gruppen I. Grund, vol. 134. Math. Wiss. Springer, Berlin (1967)

[10]

Jespers E, Kubat Ł, Van Antwerpen A, Vendramin L. Factorizations of skew braces. Math. Ann.. 2019, 375 3–4 1649-1663

[11]

Kassel C. Quantum Groups. Graduate Texts in Mathematics. 1995 New York: Springer

[12]

Meng H, Ballester-Bolinches A, Esteban-Romero R. Left braces and the quantum Yang–Baxter equation. Proc. Edinb. Math. Soc.. 2019, 62 2 595-608

[13]

Nasybullov T. Connections between properties of the additive and the multiplicative groups of a two-sided skew brace. J. Algebra. 2019, 540 156-167

[14]

Numata M. On the ${\pi }$-nilpotent length of ${\pi }$-solvable groups. Osaka J. Math.. 1971, 8 3 447-451

[15]

Rump W. Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra. 2007, 307 153-170

[16]

Smoktunowicz A, Vendramin L. On skew braces (with an appendix by N. Byott and L. Vendramin). J. Comb. Algebra. 2018, 2 1 47-86

[17]

Sysak, Y.P.: Some examples of factorized gorups and their relation to ring theory. In: de Giovanni, F., et al. (eds.) Infinite Groups 1994. Proceedings of the International Conference, Ravello, Italy, May 23–27, 1994, pp. 257–269. Walter de Gruyter, Berlin (1996)

[18]

Sysak, Y.P.: Products of groups and quantum Yang–Baxter equation. Notes of a talk in Advances in Group Theory and Applications, Porto Cesareo, Lecce, Italy (2011)

[19]

The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.10.1. http://www.gap-system.org (2019)

[20]

Vendramin, L., Konovalov, A.: YangBaxter: combinatorial solutions for the Yang–Baxter equation. Version 0.9.0. https://gap-packages.github.io/YangBaxter/ (2019)

[21]

Yang CN. Some exact results for many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 1967, 19 1312-1315

AI Summary AI Mindmap
PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/