A High-Dimensional Test for Multivariate Analysis of Variance Under a Low-Dimensional Factor Structure

Mingxiang Cao , Yanling Zhao , Kai Xu , Daojiang He , Xudong Huang

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 581 -597.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (4) : 581 -597. DOI: 10.1007/s40304-020-00236-1
Article

A High-Dimensional Test for Multivariate Analysis of Variance Under a Low-Dimensional Factor Structure

Author information +
History +
PDF

Abstract

In this paper, the problem of high-dimensional multivariate analysis of variance is investigated under a low-dimensional factor structure which violates some vital assumptions on covariance matrix in some existing literature. We propose a new test and derive that the asymptotic distribution of the test statistic is a weighted distribution of chi-squares of 1 degree of freedom under the null hypothesis and mild conditions. We provide numerical studies on both sizes and powers to illustrate performance of the proposed test.

Keywords

High-dimensional data / MANOVA / Low-dimensional factor structure / Chi-square distribution

Cite this article

Download citation ▾
Mingxiang Cao, Yanling Zhao, Kai Xu, Daojiang He, Xudong Huang. A High-Dimensional Test for Multivariate Analysis of Variance Under a Low-Dimensional Factor Structure. Communications in Mathematics and Statistics, 2022, 10(4): 581-597 DOI:10.1007/s40304-020-00236-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn SC, Horenstein AR. Eigenvalue ratio test for the number of factors. Econometrica. 2013, 81 1203-1227

[2]

Bai Z, Saranadasa H. Effect of high dimension: by an example of a two sample problem. Stat. Sin.. 1996, 6 311-329

[3]

Cai T, Xia Y. High-dimensional sparse MANOVA. J. Multivar. Anal.. 2014, 131 174-196

[4]

Cao M, Park J, He D. A test for $k$ sample Behrens–Fisher problem in high dimensional data. J. Stat. Plan. Inference. 2019, 201 86-102

[5]

Chen S, Qin Y. A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Stat.. 2010, 38 808-835

[6]

Chen S, Zhang L, Zhong P. Tests for high-dimensional covariance matrices. J. Am. Stat. Assoc.. 2010, 105 810-819

[7]

Fujikoshi Y, Himeno T, Wakaki H. Asymptotic results of a high dimensional MANOVA test and power comparisons when the dimension is large compared to the sample size. J. Jpn .Stat. Soc.. 2004, 34 19-26

[8]

Hu J, Bai Z, Wang C, Wang W. On testing the equality of high dimensional mean vectors with unequal covariance matrices. Ann. Inst. Stat. Math.. 2017, 69 365-387

[9]

Ma Y, Lan W, Wang H. A high dimensional two-sample test under a low dimensional factor structure. J. Multivar. Anal.. 2015, 140 162-170

[10]

Muirhead RJ. Aspects of Multivariate Statistical Theory. 1982 New York: Wiley

[11]

Schott J. Some high-dimensional tests for a one-way MANOVA. J. Multivar. Anal.. 2007, 98 1825-1839

[12]

Srivastava M. Multivariate theory for analyzing high dimensional data. J. Jpn. Stat. Soc.. 2007, 37 53-86

[13]

Wang, R., Xu, X.: Least favorable direction test for multivariate analysis of variance in high dimension. Stat. Sin. (2019). http://www3.stat.sinica.edu.tw/ss_newpaper/SS-2018-0279_na.pdf

[14]

Wang H. Factor profiled sure independence screening. Biometrika. 2012, 99 15-28

[15]

Wang R, Xu X. On two sample mean tests under spiked covariances. J. Multivar. Anal.. 2018, 167 225-249

[16]

Yamada T, Srivastava M. A test for multivariate analysis of variance in high dimension. Commun. Stat. Simul. Comput.. 2012, 41 2602-2615

[17]

Zhang J. Approximate and asymptotic distributions of chi-squared-type mixtures with applications. J. Am. Stat. Assoc.. 2005, 100 273-285

[18]

Zhang J, Guo J, Zhou B. Linear hypothesis testing in high-dimensional one-way MANOVA. J. Multivar. Anal.. 2017, 155 200-216

[19]

Zhu Z, Ong YS, Dash M. Markov blanket-embedded genetic algorithm for gene selection. Pattern Recogn.. 2007, 49 3236-3248

Funding

National Natural Science Foundation of China(11601008)

Anhui Normal University(2016XJJ101)

Natural Science Foundation of Anhui Province(1508085QA11)

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/