The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra

Weiguo Lyu , Guodong Zhou

Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (2) : 299 -330.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (2) : 299 -330. DOI: 10.1007/s40304-020-00234-3
Article

The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra

Author information +
History +
PDF

Abstract

We show that the normalized cochain complex of a nonsymmetric cyclic operad with multiplication is a Quesney homotopy BV algebra; as a consequence, the cohomology groups form a Batalin–Vilkovisky algebra, which is a result due to L. Menichi. We provide ample examples.

Keywords

Nonsymmetric operad / Cyclic operad / Gerstenhaber-Voronov algebra / Batalin–Vilkovisky algebra / Quesney homotopy BV algebra

Cite this article

Download citation ▾
Weiguo Lyu, Guodong Zhou. The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra. Communications in Mathematics and Statistics, 2022, 10(2): 299-330 DOI:10.1007/s40304-020-00234-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Connes, A., Moscovici, H.: Cyclic cohomology and Hopf algebra symmetry, Conference Moshe Flato 1999, Vol. I (Dijon), Math. Phys. Stud. vol. 21, Kluwer, (2000), 199–246

[2]

Deligne, P.: Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld, May 17, (1993)

[3]

Doi Y. Homological coalgebra. J. Math. Soc. Jpn.. 1981, 33 1 31-50

[4]

Eu C-H, Schedler T. Calabi-Yau Frobenius algebra. J. Algebra. 2009, 321 3 774-815

[5]

Fiorenza, D., Kowalzig, N.: Cyclic Gerstenhaber-Schack cohomology, to appear in J. Noncomm. Geom. arXiv:1812.10447

[6]

Gerstenhaber M. The cohomology structure of an associative ring. Ann. Math. (2). 1963, 78 267-288

[7]

Gerstenhaber M. On the deformation of rings and algebras. Ann. Math. (2). 1964, 79 59-103

[8]

Gerstenhaber, M., Schack, S.: Algebras, bialgebras, quantum groups, and algebraic deformation, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), Contemp. Math., vol. 134, Amer. Math. Soc., (1992), pp. 51–92

[9]

Gerstenhaber, M., Voronov, A.A.: Higher operations on Hochschild complex. Funct. Anal. Appl. 29(1), 3 (1995)

[10]

Gerstenhaber, M., Voronov, A.A.: Homotopy G-Algebras and Moduli Space Operad, IMRN, No. 3, (1995)

[11]

Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces, preprint. arXiv:hep-th/9403055

[12]

Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology, Geometry, Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, pp. 167–201 (1995)

[13]

Ginzburg, V.: Calabi-Yau algebras, preprint. arXiv:math/0612139

[14]

Hochschild G. On the cohomology groups of an associative algebra. Ann. Math. (2). 1945, 46 58-67

[15]

Kadeishvili T. On the cobar construction of a bialgebra. Homol. Homotopy Appl.. 2005, 7 2 109-122

[16]

Kontsevich M. Deformation quantization of Poisson manifolds. Lett. Math. Phys.. 2003, 66 3 157-216

[17]

Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie. The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque (1985), Numéro Hors Série, pp. 257–271

[18]

Kowalzig N, Krähmer U. Batalin–Vilkovisky structures on Ext and Tor. J. Reine Angew. Math.. 2014, 697 159-219

[19]

Kowalzig N. Batalin–Vilkovisky algebra structures on (Co)Tor and Poisson bialgebroids. J. Pure Appl. Algebra. 2015, 219 9 3781-3822

[20]

Kowalzig N. When Ext is a Batalin–Vilkovisky algebra. J. Noncommut. Geom.. 2018, 12 3 1081-1131

[21]

Lambre T. Dualité de Van den Bergh et Structure de Batalin–Vilkovisky sur les algèbres de Calabi–Yau. J. Noncommut. Geom.. 2010, 4 441-457

[22]

Loday J-L. Cyclic Homology, Grundlehren der Mathematischen Wissenschaften. 1998 22 Berlin: Springer

[23]

Loday J-L, Vallette B. Algebraic Operads, Grundlehren der Mathematischen Wissenschaften. 2012 Berlin: Springer

[24]

Lambre T, Zhou G-D, Zimmermann A. The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin–Vilkovisky algebra. J. Algebra. 2016, 446 103-131

[25]

Markl M, Shnider S, Stasheff J. Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs. 2002 Providence: American Mathematical Society

[26]

May JP. The Geometry of Iterated Loop Spaces, Lectures Notes in Mathematics. 1972 Berlin: Springer

[27]

Menichi L. Batalin–Vilkovisky algebras and cyclic cohomology of Hopf algebras. K-Theory. 2004, 32 3 231-251

[28]

Menichi L. Connes–Moscovici characteristic map is a Lie algebra morphism. J. Algebra. 2011, 331 311-337

[29]

Quesney A. Homotopy BV-algebra structure on the double cobar construction. J. Pure. Appl. Algebra. 2016, 220 1963-1989

[30]

Tamarkin, D.: Another proof of M. Kontsevich formality theorem, preprint. arXiv:math/9803025

[31]

Tradler T. The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann. Inst. Fourier. 2008, 58 7 2351-2379

[32]

Volkov YV. BV differential on Hochschild cohomology of Frobenius algebras. J. Pure Appl. Algebra. 2016, 220 10 3384-3402

[33]

Wang, Z.-F.: Gerstenhaber algebra and Deligne’s conjecture on Tate-Hochschild cohomology. Tans. Amer. Math. Soc. to appear. arXiv:1801.07990

[34]

Xu P. Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys.. 1999, 200 545-560

[35]

Skowroński, A., Yamagata, K.: Frobenius Algebras 1, European Mathematical Society Textbooks in Mathematics, p.336 (2011)

[36]

Zimmermann A. Representation Theory: A Homological Algebra Point of View. 2014 London: Springer

Funding

Fundamental Research Funds for the Central Universities(WK0010000061)

NSFC(11671139)

STCSM(13dz2260400)

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/