The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra
Weiguo Lyu , Guodong Zhou
Communications in Mathematics and Statistics ›› 2022, Vol. 10 ›› Issue (2) : 299 -330.
The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra
We show that the normalized cochain complex of a nonsymmetric cyclic operad with multiplication is a Quesney homotopy BV algebra; as a consequence, the cohomology groups form a Batalin–Vilkovisky algebra, which is a result due to L. Menichi. We provide ample examples.
Nonsymmetric operad / Cyclic operad / Gerstenhaber-Voronov algebra / Batalin–Vilkovisky algebra / Quesney homotopy BV algebra
| [1] |
Connes, A., Moscovici, H.: Cyclic cohomology and Hopf algebra symmetry, Conference Moshe Flato 1999, Vol. I (Dijon), Math. Phys. Stud. vol. 21, Kluwer, (2000), 199–246 |
| [2] |
Deligne, P.: Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld, May 17, (1993) |
| [3] |
|
| [4] |
|
| [5] |
Fiorenza, D., Kowalzig, N.: Cyclic Gerstenhaber-Schack cohomology, to appear in J. Noncomm. Geom. arXiv:1812.10447 |
| [6] |
|
| [7] |
|
| [8] |
Gerstenhaber, M., Schack, S.: Algebras, bialgebras, quantum groups, and algebraic deformation, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), Contemp. Math., vol. 134, Amer. Math. Soc., (1992), pp. 51–92 |
| [9] |
Gerstenhaber, M., Voronov, A.A.: Higher operations on Hochschild complex. Funct. Anal. Appl. 29(1), 3 (1995) |
| [10] |
Gerstenhaber, M., Voronov, A.A.: Homotopy G-Algebras and Moduli Space Operad, IMRN, No. 3, (1995) |
| [11] |
Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces, preprint. arXiv:hep-th/9403055 |
| [12] |
Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology, Geometry, Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, pp. 167–201 (1995) |
| [13] |
Ginzburg, V.: Calabi-Yau algebras, preprint. arXiv:math/0612139 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie. The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque (1985), Numéro Hors Série, pp. 257–271 |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Tamarkin, D.: Another proof of M. Kontsevich formality theorem, preprint. arXiv:math/9803025 |
| [31] |
|
| [32] |
|
| [33] |
Wang, Z.-F.: Gerstenhaber algebra and Deligne’s conjecture on Tate-Hochschild cohomology. Tans. Amer. Math. Soc. to appear. arXiv:1801.07990 |
| [34] |
|
| [35] |
Skowroński, A., Yamagata, K.: Frobenius Algebras 1, European Mathematical Society Textbooks in Mathematics, p.336 (2011) |
| [36] |
|
/
| 〈 |
|
〉 |