Explicit Gaussian Quadrature Rules for $C^1$ Cubic Splines with Non-uniform Knot Sequences

Peng Chen , Xin Li

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 331 -345.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 331 -345. DOI: 10.1007/s40304-020-00220-9
Article

Explicit Gaussian Quadrature Rules for $C^1$ Cubic Splines with Non-uniform Knot Sequences

Author information +
History +
PDF

Abstract

This paper provides the explicit and optimal quadrature rules for the cubic $C^1$ spline space, which is the extension of the results in Ait-Haddou et al. (J Comput Appl Math 290:543–552, 2015) for less restricted non-uniform knot values. The rules are optimal in the sense that there exist no other quadrature rules with fewer quadrature points to exactly integrate the functions in the given spline space. The explicit means that the quadrature nodes and weights are derived via an explicit recursive formula. Numerical experiments and the error estimations of the quadrature rules are also presented in the end.

Keywords

Gaussian quadrature / Non-uniform / Isogeometric analysis / Cubic splines

Cite this article

Download citation ▾
Peng Chen, Xin Li. Explicit Gaussian Quadrature Rules for $C^1$ Cubic Splines with Non-uniform Knot Sequences. Communications in Mathematics and Statistics, 2021, 9(3): 331-345 DOI:10.1007/s40304-020-00220-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ait-Haddou R, Barton M, Calo V. Explicit gaussian quadrature rules for $C^1$ cubic splines with symmetrically stretched knot sequences. J. Comput. Appl. Math.. 2015, 290 543-552

[2]

Atkinson K. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations Of the Second-Kind. 1989 Philadelphia: SIAM

[3]

Barendrecht P, Bartoň M, Kosinka J. Efficient quadrature rules for subdivision surfaces in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2018

[4]

Barton M, Calo V. Gaussian quadrature for splines via homotopy continuation: Rules for $C^2$ cubic splines. J. Comput. Appl. Math.. 2016, 296 709-723

[5]

Barton M, Calo VM. Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2016, 305 217-240

[6]

Boor CD. On calculating with B-splines. J. Approx. Theory. 1972, 6 50-62

[7]

Cottrell J, Hughes T, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. 2009 Hoboken: Wiley

[8]

Deng F, Zeng C, Deng J. Boundary-mapping parametrization in isogeometric analysis. Commun. Math. Stat.. 2016, 4 203-216

[9]

Cohen E, Riesenfeld RF, Elber G. Geometric Modeling with Splines: An Introduction. 2001 Wellesley: A.K. Peters Ltd

[10]

Farin G, Hoschek J, Kim M. Handbook of Computer Aided Geometric Design. 2002 Amsterdam: Elsevier

[11]

Gautschi W. Numerical Analysis. 1999 Berlin: Springer

[12]

Golub G, Welsch J. Calculation of gauss quadrature rules. Math. Comput.. 1969, 23 221-230

[13]

Hiemstra RR, Calabro F, Schillinger D, Hughes T. Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2017, 316 966-1004

[14]

Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng.. 2005, 194 4135-4195

[15]

Hughes TJR, Reali A, Sangalli G. Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2010, 199 5–8 301-313

[16]

Jingjing Zhang XL. On the linear independence and partition of unity of arbitrary degree analysis-suitable t-splines. Commun. Math. Stat.. 2015, 3 353-364

[17]

Karlin S, Studden W. Tchebycheff systems: with applications in analysis and statistics. Rev. Inst. Int. Stat.. 1967, 35 1093

[18]

Ma J, Rokhlin V, Wandzura S. Generalized gaussian quadrature rules for systems of arbitrary functions. Siam J. Numer. Anal.. 1996, 33 971-996

[19]

Micchelli C, Pinkus A. Moment theory for weak chebyshev systems with applications to monosplines, quadrature formulae and best one-sided $L^1$-approximation by spline functions with fixed knots. SIAM J. Math. Anal.. 1977, 8 206-230

[20]

Nikolov G. On certain definite quadrature formulae. J. Comput. Appl. Math.. 1996, 75 329-343

[21]

Nikolov G, Simian C. Approximation and Computation. 2010 New York: Springer

[22]

Qarariyah, A., Deng, F., Yang, T., Deng, J.: Numerical solution for schrödinger eigenvalue problem using isogeometric analysis on implicit domains. Commun. Math. Stat. (2019)

[23]

Sloan I. A quadrature-based approach to improving the collocation method. Numer. Math.. 1988, 54 41-56

[24]

Solin P, Segeth K, Dolezel I. Higher-Order Finite Element Methods. 2003 Balkema: CRC Press

[25]

Xu G, Kwok TH, Wang C. Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization. Comput. Aided Des.. 2017, 91 1-3

[26]

Yang T, Qarariyah A, Kang H, Deng J. Numerical integration over implicitly defined domains with topological guarantee. Commun. Math. Stat.. 2019, 7 459-474

[27]

Zhang F, Xu Y, Chen F. Discontinuous galerkin methods for isogeometric analysis for elliptic equations on surfaces. Commun. Math. Stat.. 2014, 2 431-461

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/