The Most Likely Common Difference of Arithmetic Progressions Among Primes

Xiaosheng Wu , Pengzhen Yang

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 315 -329.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 315 -329. DOI: 10.1007/s40304-020-00218-3
Article

The Most Likely Common Difference of Arithmetic Progressions Among Primes

Author information +
History +
PDF

Abstract

Let $d^*_k(x)$ be the most likely common differences of arithmetic progressions of length $k+1$ among primes $\le x$. Based on the truth of Hardy–Littlewood Conjecture, we obtain that $\lim \limits _{x\rightarrow +\infty }d^*_k(x)=+\infty $ uniformly in k, and every prime divides all sufficiently large most likely common differences.

Keywords

Common difference / Arithmetic progression / Hardy–Littlewood Conjecture / Differences among primes / Singular series

Cite this article

Download citation ▾
Xiaosheng Wu, Pengzhen Yang. The Most Likely Common Difference of Arithmetic Progressions Among Primes. Communications in Mathematics and Statistics, 2021, 9(3): 315-329 DOI:10.1007/s40304-020-00218-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Erdös P, Straus EG. Remarks on the differences between consecutive primes. Elem. Math.. 1980, 35 5 115-118

[2]

Feng S, Wu X. The $k$-tuple jumping champions among consecutive primes. Acta. Arith.. 2012, 156 4 325-339

[3]

Funkhouser, S., Goldston, D.A., Sengupta, D., Sengupta, J.: Prime difference champions. arXiv:1612.02938

[4]

Goldston DA, Pintz J, Yildirim CY. Primes in tuples. I. Ann. Math.. 2009, 170 819-862

[5]

Goldston DA, Ledoan AH. Jumping champions and gaps between consecutive primes. Int. J. Number Theory. 2011, 7 6 1-9

[6]

Goldston DA, Ledoan AH. The jumping champions conjecture. Mathematika. 2015, 61 3 719-740

[7]

Granville A, Kane DM, Koukoulopoulos D, Lemke Oliver RJ. Best Possible Dersities of Dickson $m$-Tuples, as a Consequence of Zhang-Maynard-Tao. Analytic Number Theory. 2015 Cham: Springer. 133-144

[8]

Green BJ, Tao T. The primes contain arbitrarily long arithmetic progressions. Ann. Math.. 2008, 167 6 481-547

[9]

Hardy, G.H., Littlewood, J.E.: Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes. Acta. Math. 44(1), 1–70 (1923). Reprinted as pp. 561–630 in Collected Papers of G. H. Hardy, Vol. I (Editor by a committee appointed the London Mathematical Society), Clarendon Press, Oxford (1966)

[10]

Huang W, Shao S, Ye X. Nil Bohr-sets and almost automorphy of higher order. Mem. Am. Math. Soc.. 2016, 241 1143 83

[11]

Huang W, Wu X. On the set of the difference of primes. Proc. Am. Math. Soc.. 2017, 145 9 3787-3793

[12]

Kronecker, L.: Vorlesungern über Zahlenthorie, I., p. 68, Teubner, Leipzig (1901)

[13]

Maynard J. Small gaps between primes. Ann. Math. (2). 2015, 181 1 383-413

[14]

Nelson, H.: Problem 654: Consecutive primes. J. Recr. Math. 10, 212 (1977–78)

[15]

Odlyzko A, Rubinstein M, Wolf M. Jumping champions. Exp. Math.. 1999, 8 2 107-118

[16]

Pintz J. Polignac Numbers, Conjectures of Erdös on Gaps Between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture. From Arithmetic to Zeta-Functions. 2016 Cham: Springer. 367-384

[17]

Polymath, D.H.J.: Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. 1, 83 (2014), Art. 12

[18]

Shao X. Narrow arithmetic progressions in the primes. Int. Math. Res. Not. IMRN. 2017, 2 391-428

[19]

Tao T, Ziegler T. Narrow Progressions in the Primes. Analytic Number Theory. 2015 Berlin: Springer. 357-379

[20]

Wu L, Wu X. The $k$-tuple prime difference champions. J. Number Theory. 2019, 196 223-243

[21]

Zhang Y. Bounded gaps between primes. Ann. Math.. 2014, 179 1121-1174

Funding

National Natural Science Foundation of China(11871187)

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/