Local Existence and Uniqueness of Navier–Stokes–Schrödinger System

Jiaxi Huang

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 101 -118.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 101 -118. DOI: 10.1007/s40304-020-00214-7
Article

Local Existence and Uniqueness of Navier–Stokes–Schrödinger System

Author information +
History +
PDF

Abstract

In this article, we prove that there exists a unique local smooth solution for the Cauchy problem of the Navier–Stokes–Schrödinger system. Our methods rely upon approximating the system with a sequence of perturbed system and parallel transport and are closer to the one in Ding and Wang (Sci China 44(11):1446–1464, 2001) and McGahagan (Commun Partial Differ Equ 32(1–3):375–400, 2007).

Keywords

Initial value problem / Local solution / Navier–Stokes–Schrödinger system / Schrödinger maps

Cite this article

Download citation ▾
Jiaxi Huang. Local Existence and Uniqueness of Navier–Stokes–Schrödinger System. Communications in Mathematics and Statistics, 2021, 9(1): 101-118 DOI:10.1007/s40304-020-00214-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bejenaru I. Global results for Schrödinger maps in dimensions $n\ge 3$. Commun. Partial Differ. Equ.. 2008, 33 451-477

[2]

Bejenaru I, Ionescu A, Kenig C. Global existence and uniqueness of Schrödinger maps in dimensions $d\ge 4$. Adv. Math.. 2007, 215 263-291

[3]

Bejenaru I, Ionescu A, Kenig C, Tataru D. Global Schrödinger maps in dimensions $d\ge 2$: small data in the critical Sobolev spaces. Ann. Math.. 2011, 173 1443-1506

[4]

Bejenaru I, Ionescu A, Kenig C, Tataru D. Equivariant Schrödinger maps in two spatial dimensions. Duke Math. J.. 2013, 162 11 1967-2025

[5]

Bejenaru I, Tataru D. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Mem. AMS. 2014, 228 1069

[6]

Brezis, H., Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Diff. Eq. 5:773–789

[7]

Ding W, Wang Y. Schrödinger flow of maps into symplectic manifolds. Sci. China. 1998, 41 7 746-755

[8]

Ding W, Wang Y. Local Schrödinger flow into Kähler manifolds. Sci. China. 2001, 44 11 1446-1464

[9]

Fan JS, Gao HJ, Guo BL. Regularity critera for the Navier–Stokes–Landau–Lifshitz system. J. Math. Anal. Appl.. 2010, 363 29-37

[10]

Gustafson S, Kang K, Tsai T. Schrödinger flow near harmonic maps. Commun Pure Appl. Math.. 2007, 60 4 463-499

[11]

Gustafson S, Kang K, Tsai T. Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J.. 2008, 145 3 537-583

[12]

Gustafson S, Nakanishi K, Tsai T. Asymtotic stability, concentration, and oscillation in harmonic map heat-flow, Landau–Lifshitz, and Schrödinger maps on ${\mathbb{R}}^2$. Commun. Math. Phys.. 2010, 300 1 205-242

[13]

Ionescu AD, Kenig CE. Low-regularity Schrödinger maps, II: global well-posedness in dimensions $d\ge 3$. Commun. Math. Phys.. 2007, 271 2 53-559

[14]

Koch H, Tataru D, Visan M. Dispersive Equations and Nonlinear Waves. Oberwolfach Seminars. 2014 Basel: Birkhauser

[15]

Li, Z.: Global 2D Schrödinger map flows to Kähler manifolds with small energy, preprint. arXiv:1811.10924 (2018)

[16]

Li Z, Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: high dimensions, preprint. arXiv:1903.05551 (2019)

[17]

McGahagan H. An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ.. 2007, 32 1–3 375-400

[18]

Merle F, Raphaël P, Rodnianski I. Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math.. 2013, 193 2 249-365

[19]

Perelman G. Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys.. 2014, 330 1 69-105

[20]

Schonbek ME. $L^2$ decay for weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 1985, 88 209-222

[21]

Song C, Wang Y. Uniqueness of Schrödinger flow on manifolds. Commun. Anal. Geom.. 2018, 26 1 217-235

[22]

Sulem PL, Sulem C, Bardos C. On the continuous limit for a system of classical spins. Commun. Math. Phys.. 1986, 107 3 431-454

[23]

Wang GW, Guo BL. Existence and uniqueness of the weak solution to the incompressible Navier–Stokes–Landau–Lifshitz model in 2-dimension. Acta Math. Sci.. 2017, 37 1361-1372

[24]

Wang GW, Guo BL. Global weak solution to the quantum Navier–Stokes–Landau–Lifshitz equations with density-dependent viscosity. Discrete Contin. Dyn. Syst. B. 2019, 24 6141-6166

[25]

Wei RY, Li Y, Yao ZA. Decay rates of higher-order norms of solutions to the Navier–Stokes–Landau–Lifshitz system. Appl. Math. Mech. Engl. Ed.. 2018, 39 10 1499-1528

[26]

Zhai XP, Li YS, Yan W. Global solutions to the Navier–Stokes–Landau–Lifshitz system. Math. Nachr.. 2016, 289 377-388

Funding

National Natural Science Foundation of China(11771415)

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/