The Normalizer Property for Finite Groups Whose Sylow 2-Subgroups are Abelian

Tao Zheng , Xiuyun Guo

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 87 -99.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 87 -99. DOI: 10.1007/s40304-020-00211-w
Article

The Normalizer Property for Finite Groups Whose Sylow 2-Subgroups are Abelian

Author information +
History +
PDF

Abstract

In this paper we mainly investigate the Coleman automorphisms and class-preserving automorphisms of finite AZ-groups and finite groups related to AZ-groups. For example, we first prove that $Out_c(G)$ of an AZ-group G must be a $2'$-group and therefore the normalizer property holds for G. Then we find some classes of finite groups such that the intersection of their outer class-preserving automorphism groups and outer Coleman automorphism groups is $2'$-groups, and therefore, the normalizer property holds for these kinds of finite groups. Finally, we show that the normalizer property holds for the wreath products of AZ-groups by rational permutation groups under some conditions.

Keywords

Class-preserving automorphism / Coleman automorphism / Normalizer property / AZ-group

Cite this article

Download citation ▾
Tao Zheng, Xiuyun Guo. The Normalizer Property for Finite Groups Whose Sylow 2-Subgroups are Abelian. Communications in Mathematics and Statistics, 2021, 9(1): 87-99 DOI:10.1007/s40304-020-00211-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bächle, A.: A Survey on the Normalizer Problem for Integral Group Rings. Groups St Andrews 2013, London Mathematical Society Lecture Notes Series, vol. 422, pp. 152–159. Cambridge University Press, Cambridge (2015)

[2]

Coleman DB. On the modular group ring of a $p$-group. Proc. Am. Math. Soc.. 1964, 5 511-514

[3]

Feit W, Steitz GM. On finite rational groups and related topics. Illinois J. Math.. 1988, 33 1 103-131

[4]

Gagen TM. On groups with abelian sylow $2$-groups. Math. Zeitschr.. 1965, 90 268-272

[5]

Hai J, Ge S. Normalizer property for integral group rings of finite groups. Sci. China. Ser. A. 2015, 45 6 745-750(in Chinese)

[6]

Hai J, Guo J. The normalizer property for the integral group ring of the wreath product of two symmetric groups $S_k$ and $S_n$. Commun. Algebra. 2017, 45 1278-1283

[7]

Hai J, Guo J. The normalizer property of integral group rings of semidirect products of finite $2$-closed groups by rational groups. Commun. Algebra. 2018, 46 1237-1242

[8]

Hertweck M. A counterexample to the isomorphism problem for integral group rings. Ann. Math.. 2001, 154 115-138

[9]

Hertweck M. Class-preserving automorphisms of finite groups. J. Algebra. 2001, 241 1-26

[10]

Hertweck M. Local analysis of the normalizer problem. J. Pure Appl. Algebra. 2001, 163 259-276

[11]

Hertweck M, Kimmerle W. Coleman automorphisms of finite groups. Math. Z.. 2002, 242 203-215

[12]

Hertweck M, Jespers E. Class-preserving automorphisms and the normalizer property for Blackburn groups. J. Group Theory. 2009, 12 157-169

[13]

Hertweck, M.: Contributions to the integral representation theory of groups. Online Publikationen der Universitt Stuttgart, (2004). http://elib.uni-stuttgart.de/opus/volltexte/2004/1683/

[14]

Jackowski S, Marciniak ZS. Group automorphisms inducing the identity map on cohomology. J. Pure Appl. Algebra. 1987, 44 241-250

[15]

Juriaans SO, Miranda JM, Robério JR. Automorphisms of finite groups. Commun. Algebra. 2004, 32 1705-1714

[16]

Li Y. The normalizer property of a metabelian group in its integral group ring. J. Algebra. 2002, 256 343-351

[17]

Li Z, Gao H. The influence of maximal subgroups on Coleman automorphisms of finite groups. Publ. Math. Debrecen. 2018, 92 1-2 101-113

[18]

Li Z. Coleman automorphisms of permutational wreath products II. Commun. Algebra. 2018, 46 10 4473-4479

[19]

Marciniak, Z.S., Roggenkamp, K.W.: The normalizer of a finite group in its integral group ring and Cech cohomology. In: Algebra-Representation Theory, pp. 159–188. Kluwer Academic Publishers, Dordrecht (2001)

[20]

Mazur M. Automorphisms of finite groups. Commun. Algebra. 1994, 22 15 6259-6271

[21]

Mazur M. The normalizer of a group in the unit group of its group ring. J. Algebra. 1999, 212 1 175-189

[22]

Sah CH. A class of finite groups with abelian $2$-Sylow subgroups. Math. Zeitschr.. 1963, 82 335-346

[23]

Sehgal SK. Units in Integral Group Rings. 1993 Harlow: Longman Scientific and Technical Press

[24]

Van Antwerpen A. Coleman automorphisms of finite groups and their minimal normal subgroups. J. Pure Appl. Algebra. 2018, 222 3379-3394

Funding

National Natural Science Foundation of China(11771271)

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/