On the Combinatorics of Fibonacci-Like Non-renormalizable Maps

Haoyang Ji , Simin Li

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (4) : 473 -496.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (4) : 473 -496. DOI: 10.1007/s40304-020-00210-x
Article

On the Combinatorics of Fibonacci-Like Non-renormalizable Maps

Author information +
History +
PDF

Abstract

In this paper, we extend Fibonacci unimodal map to a wider class. We describe the combinatorial property of these maps by first return map and principal nest. We give the sufficient and necessary condition for the existence of this class of maps. Moreover, for maps with ’bounded combinatorics’, we prove that they have no absolutely continuous invariant probability measure when the critical order $\ell $ is sufficiently large; for maps with reluctantly recurrent critical point, we prove they have absolutely continuous invariant probability measure whenever the critical order $\ell >1$.

Keywords

Fibonacci / Principal nest / Invariant measure / Generalized renormalization

Cite this article

Download citation ▾
Haoyang Ji, Simin Li. On the Combinatorics of Fibonacci-Like Non-renormalizable Maps. Communications in Mathematics and Statistics, 2020, 8(4): 473-496 DOI:10.1007/s40304-020-00210-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bruin H. Combinatorics of the kneading map. Int. J. Bifurc. Chaos.. 1995, 5 5 1339-1349

[2]

Bruin H. Topological conditions for the existence of absorbing Cantor sets. Trans. Am. Math. Soc.. 1998, 350 2229-2263

[3]

Block L, Coppel W. Dynamics in One-Dimension. Lect. Notes in Math., 1513.. 1992 Berlin: Springer

[4]

Blokh A, Misiurewicz M. Wild attractors of polymodal negative Schwarzian maps. Commun. Math. Phys.. 1998, 192 2 397-416

[5]

Bruin H, Keller G, Nowicki T, van Strien S. Wild Cantor attractors exist. Ann. Math.. 1996, 143 97-130

[6]

Bruin H, Shen W, van Strien S. Invariant measure exists without a growth condition. Commun. Math. Phys.. 2003, 241 287-306

[7]

de Melo W, van Strien S. One-Dimensional Dynamics. 1993 Berlin: Springer

[8]

Gao R, Shen W. Decay of correlations for Fibonacci unimodal interval maps. Acta Math. Sin. Eng. Ser.(1). 2018, 34 114-138

[9]

Kozlovski O. Getting rid of the negative Schwarzian derivative condition. Ann. Math.. 2000, 152 743-762

[10]

Lyubich M, Milnor J. The Fibonacci unimodal map. J. Am. Math. Soc.. 1993, 6 2 425-457

[11]

Li S, Shen W. The topological complexity of cantor attractors for unimodal interval maps. Trans. Am. Math. Soc.. 2015, 268 1 659-688

[12]

Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math.. 1994, 140 347-404

[13]

Li S, Wang Q. A new class of generalized Fibonacci unimodal maps. Nonlinearity. 2014, 27 1633-1643

[14]

Martens M. Distortion results and invariant Cantor sets of unimodal maps. Ergod. Theory. Dyn. Syst.. 1994, 14 331-349

[15]

Nowicki T, Sands D. Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math.. 1998, 132 3 633-680

[16]

Peterson K. Ergodic Theory. 1983 Cambridge: Cambridge University Press

[17]

Shen W. Decay of geometry for unimodal maps: an elementary proof. Ann. Math.. 2006, 163 383-404

[18]

van Strien S, Vargas E. Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc.. 2004, 17 4 749-782

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/