$\gamma $-order normal distribution,Multivariate Student’s t-distribution,Multivariate Laplace distribution" /> $\gamma $-order normal distribution" /> $\gamma $-order normal distribution,Multivariate Student’s t-distribution,Multivariate Laplace distribution" />

Information Divergence and the Generalized Normal Distribution: A Study on Symmetricity

Thomas L. Toulias , Christos P. Kitsos

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (4) : 439 -465.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (4) : 439 -465. DOI: 10.1007/s40304-019-00200-8
Article

Information Divergence and the Generalized Normal Distribution: A Study on Symmetricity

Author information +
History +
PDF

Abstract

This paper investigates and discusses the use of information divergence, through the widely used Kullback–Leibler (KL) divergence, under the multivariate (generalized) $\gamma $-order normal distribution ($\gamma $-GND). The behavior of the KL divergence, as far as its symmetricity is concerned, is studied by calculating the divergence of $\gamma $-GND over the Student’s multivariate t-distribution and vice versa. Certain special cases are also given and discussed. Furthermore, three symmetrized forms of the KL divergence, i.e., the Jeffreys distance, the geometric-KL as well as the harmonic-KL distances, are computed between two members of the $\gamma $-GND family, while the corresponding differences between those information distances are also discussed.

Keywords

Kullback–Leibler divergence / Jeffreys distance / Resistor-average distance / $\gamma $-order normal distribution')">Multivariate $\gamma $-order normal distribution / Multivariate Student’s t-distribution / Multivariate Laplace distribution

Cite this article

Download citation ▾
Thomas L. Toulias, Christos P. Kitsos. Information Divergence and the Generalized Normal Distribution: A Study on Symmetricity. Communications in Mathematics and Statistics, 2021, 9(4): 439-465 DOI:10.1007/s40304-019-00200-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amari S, Nagaoka H. Methods of Information Geometry. 2000 A. M. Society Oxford: Oxford University Press

[2]

Ali SM, Silvey SD. A general class of coefficients of divergence of one distribution from another. JRSS B. 1966, 28 1 131-142

[3]

Cover TM, Thomas JA. Elements of Information Theory. 2006 2 New York: Wiley

[4]

Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products. 2007 Amsterdam: Elsevier

[5]

Harremoes P. Interpretation of Rényi entropies and divergences. Phys. A. 2006, 365 1 57-62

[6]

Jeffreys H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. A. 1946, 186 453-461

[7]

Johnson, D., Sinanovic, S.: Symmetrizing the Kullback-Leibler distance. IEEE Trans. Inf, Theory (2001). https://scholarship.rice.edu/handle/1911/19969

[8]

Kitsos CP, Tavoularis NK. Logarithmic Sobolev inequalities for information measures. IEEE Trans. Inf. Theory. 2009, 55 6 2554-2561

[9]

Kitsos CP, Toulias TL. Rassias MT. Inequalities for the Fisher’s information measures. Handbook of Functional Equations: Functional Inequalities. 2014 Berlin: Springer. 281-313

[10]

Kitsos CP, Toulias TL. New information measures for the generalized normal distribution. Information. 2010, 1 13-27

[11]

Kitsos CP, Toulias TL, Trandafir PC. On the multivariate $\gamma $-ordered normal distribution. Far East J. Theor. Stat.. 2012, 38 1 49-73

[12]

Kitsos CP, Vassiliadis VG, Toulias TL. MLE for the $\gamma $-order generalized normal distribution. Discuss. Math. Probab. Stat.. 2014, 34 143-158

[13]

Kullback S, Leibler RA. On information and sufficiency. Ann. Math. Stat.. 1951, 22 79-86

[14]

Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series, Vol. I: Elementary Functions. 1998 London: Gordon and Breach Science Publishers

[15]

Toulias TL, Kitsos CP. Kullback–Leibler divergence of the $\gamma $-ordered normal over $t$-distribution. Br. J. Math. Comput. Sci.. 2012, 2 4 198-212

AI Summary AI Mindmap
PDF

307

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/