$\tau $-Hermitian–Einstein equation,Approximate $\tau $-Hermitian–Einstein structure,Semi-stability,Holomorphic filtration,Gauduchon manifold" /> $\tau $-Hermitian–Einstein equation" /> $\tau $-Hermitian–Einstein structure" /> $\tau $-Hermitian–Einstein equation,Approximate $\tau $-Hermitian–Einstein structure,Semi-stability,Holomorphic filtration,Gauduchon manifold" />

Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds

Zhenghan Shen , Pan Zhang

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (2) : 219 -237.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (2) : 219 -237. DOI: 10.1007/s40304-019-00199-y
Article

Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds

Author information +
History +
PDF

Abstract

The purpose of this paper is twofold. We first solve the Dirichlet problem for $\tau $-Hermitian–Einstein equations on holomorphic filtrations over compact Hermitian manifolds. Secondly, by using Uhlenbeck–Yau’s continuity method, we prove the existence of approximate $\tau $-Hermitian–Einstein structure on holomorphic filtrations over closed Gauduchon manifolds.

Keywords

$\tau $-Hermitian–Einstein equation')">$\tau $-Hermitian–Einstein equation / $\tau $-Hermitian–Einstein structure')">Approximate $\tau $-Hermitian–Einstein structure / Semi-stability / Holomorphic filtration / Gauduchon manifold

Cite this article

Download citation ▾
Zhenghan Shen, Pan Zhang. Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds. Communications in Mathematics and Statistics, 2020, 8(2): 219-237 DOI:10.1007/s40304-019-00199-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez-Cónsul L, García-Prada L. Dimensional reduction, Sl(2,${\mathbb{C}}$)-equivariant bundles and stable holomorphic chains. Int. J. Math.. 2001, 12 159-201

[2]

Álvarez-Cónsul L, García-Prada L. Hitchin–Kobayashi correspondence, quivers, and vortices. Commun. Math. Phys.. 2003, 238 1-33

[3]

Biquard O. On parabolic bundles over a complex surface. J. Lond. Math. Soc.. 1996, 53 302-316

[4]

Biswas I, Schumacher G. Yang–Mills equation for stable Higgs sheaves. Int. J. Math.. 2009, 20 541-556

[5]

Biswas I, Bruzzo U, Graña Otero B, Giudice AL. Yang–Mills–Higgs connections on Calabi–Yau manifolds. Asian J. Math.. 2016, 20 989-1000

[6]

Bradlow SB. Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys.. 1990, 135 1-17

[7]

Bruzzo U, Graña Otero B. Metrics on semistable and numerically effective Higgs bundles. J. Reine Angew. Math.. 2007, 612 59-79

[8]

Bruzzo U, Graña Otero B. Semistable and numerically effective principal (Higgs) bundles. Adv. Math.. 2011, 226 3655-3676

[9]

Bruzzo U, Graña Otero B. Approximate Hitchin–Kobayashi correspondence for Higgs G-bundles. Int. J. Geom. Methods Mod. Phys.. 2014, 11 1460015

[10]

Buchdahl NP. Hermitian–Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann.. 1988, 280 625-648

[11]

Cardona SAH. Approximate Hermitian–Yang–Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case. Ann. Glob. Anal. Geom.. 2012, 42 349-370

[12]

Donaldson SK. Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc.. 1985, 3 1-26

[13]

Donaldson SK. Boundary value problems for Yang–Mills fields. J. Geom. Phys.. 1992, 8 89-122

[14]

Gauduchon P. La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann.. 1984, 267 495-518

[15]

Hamilton RS. Harmonic Maps of Manifolds with Boundary. 2006 Berlin: Springer

[16]

Hitchin NJ. The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc.. 1987, 3 59-126

[17]

Hong MC. Heat flow for the Yang–Mills–Higgs field and the Hermitian Yang–Mills–Higgs metric. Ann. Glob. Anal. Geom.. 2001, 20 23-46

[18]

Jacob A. Existence of approximate Hermitian–Einstein structures on semi-stable bundles. Asian J. Math.. 2014, 18 859-883

[19]

Jacob A, Walpuski T. Hermitian Yang–Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds. Commun. PDE. 2018, 101 1566-1598

[20]

Kobayashi S. Curvature and stability of vector bundles. Proc. Jpn. Acad. Ser. A. 1982, 58 158-162

[21]

Kobayashi S. Differential Geometry of Complex Vector Bundles. 1987 Princeton: Princeton University Press

[22]

Li, J., Yau, S.T.: Hermitian–Yang–Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory, pp. 560–573. World Scientific, New York (1987)

[23]

Li JY, Zhang X. Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles. Calc. Var.. 2015, 52 783-795

[24]

Li JY, Zhang CJ, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var.. 2017, 56 1-33

[25]

Li JY, Zhang CJ, Zhang X. The limit of the Hermitian–Yang–Mills flow on reflexive sheaves. Adv. Math.. 2018, 325 165-214

[26]

Li JY, Zhang CJ, Zhang X. A note on curvature estimate of the Hermitian–Yang–Mills flow. Commun. Math. Stat.. 2018, 6 319-358

[27]

Li Z, Zhang X. Dirichlet problem for Hermitian Yang–Mills–Higgs equations over Hermitian manifolds. J. Math. Anal. Appl.. 2005, 310 68-80

[28]

Lübke M. Stability of Einstein–Hermitian vector bundles. Manuscr. Math.. 1983, 42 245-257

[29]

Lübke M, Teleman A. The Kobayashi–Hitchin correspondence. 1995 Singapore: World Scientific Publishing

[30]

Lübke M, Teleman A. The Universal Kobayashi–Hitchin Correspondence on Hermitian Manifolds. 2006 Providence: Mem. AMS

[31]

Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles and an application. Astérisque Soc. Math. France 309, (2006)

[32]

Narasimhan MS, Seshadri CS. Stable and unitary vector bundles on a compact Riemann surface. Ann. Math.. 1965, 82 540-567

[33]

Nie Y, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J. Geom. Anal.. 2018, 28 627-642

[34]

Simpson CT. Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc.. 1988, 1 867-918

[35]

Taylor ME. Partial Differential Equations I (Applied Mathematical Sciences). 2011 New York: Springer

[36]

Uhlenbeck KK, Yau ST. On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Commun. Pure Appl. Math.. 1986, 39S S257-S293

[37]

Zhang, C., Zhang, P., Zhang, X.: Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994 (2018)

[38]

Zhang X. Hermitian–Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J. Geom. Phys.. 2005, 53 315-335

[39]

Zhang X. Hermitian Yang–Mills–Higgs metrics on complete Kähler manifolds. Can. J. Math.. 2005, 57 871-896

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/