Bayesian Estimation for the Extended t-process Regression Models with Independent Errors

Zhanfeng Wang , Kai Li

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 261 -272.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (3) : 261 -272. DOI: 10.1007/s40304-019-00192-5
Article

Bayesian Estimation for the Extended t-process Regression Models with Independent Errors

Author information +
History +
PDF

Abstract

The extended t-process regression model is developed to robustly model functional data with outlier functional curves. This paper applies Bayesian estimation to propose an estimation procedure for the model with independent errors. A Monte Carlo EM method is built to estimate parameters involved in the model. Simulation studies and real examples show the proposed method performs well against outliers.

Keywords

Extended t-process regression / Functional data / Robustness / Monte Carlo EM algorithm

Cite this article

Download citation ▾
Zhanfeng Wang, Kai Li. Bayesian Estimation for the Extended t-process Regression Models with Independent Errors. Communications in Mathematics and Statistics, 2021, 9(3): 261-272 DOI:10.1007/s40304-019-00192-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Copt S, Victoria-Feser MP. High Breakdown Inference in the Mixed Linear Model. 2003 Rochester: Social Science Electronic Publishing

[2]

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodological). 1977, 39 1 1-22

[3]

Fernandez C, Steel MFJ. Multivariate student-t regression model: Pitfalls and inferences. Biometrika. 1999, 86 1 153-167

[4]

Lange K, Sinsheimer JS. Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Stat.. 1993, 2 2 175-198

[5]

Liu, C.: Statistical Analysis Using the Multivariate t Distribution. Ph.D. thesis, Harvard University (1994)

[6]

Meza C, Osorio F, De la Cruz R. Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat. Comput.. 2012, 22 1 121-139

[7]

Neal, R.M.: Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification. Technical report, Department of Statistics, University of Toronto (1997)

[8]

Ramsay JO, Silverman BW. Functional Data Analysis. 2006 Berlin: Springer

[9]

Rasmussen, C.E.: Evaluation of Gaussian Processes and Other Methods for Non-linear Regression. Ph.D. thesis, University of Toronto (1996)

[10]

Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. 2006 Cambridge: The MIT Press

[11]

Relles DA, Rogers WH. Statisticians are fairly robust estimators of location. J. Am. Stat. Assoc.. 1977, 72 357 107-111

[12]

Shi JQ, Choi T. Gaussian Process Regression Analysis for Functional Data. 2011 London: Chapman and Hall/CRC

[13]

Wang, Z., Li, K., Shi, J.Q.: A Robust Estimation for the Extended t-Process Regression Model. (2018a). arXiv:1812.07701

[14]

Wang, Z., Noh, M., Lee, Y., Shi, J.Q.: A Robust t-Process Regression Model with Independent Errors. (2018b). arXiv:1707.02014

[15]

Wang Z, Shi JQ, Lee Y. Extended t-process regression models. J. Stat. Plan. Inference. 2017, 189 38-60

[16]

Wei G, Tanner M. A monte carlo implementation of the em algorithm and the poor mans data augmentation algorithms. J. Am. Stat. Assoc.. 1990, 85 699-704

[17]

Xu P, Lee Y, Shi JQ, Eyre J. Automatic detection of significant areas for functional data with directional error control. Stat. Med.. 2019, 38 3 376-397

Funding

Anhui Provincial Natural Science Foundation(1908085MA06)

National Natural Science Foundation of China(11471302)

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/