On Cyclic DNA Codes Over ${F}_2+u{F}_2+u^2{F}_2$

Hojjat Mostafanasab , Ahmad Yousefian Darani

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 39 -52.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 39 -52. DOI: 10.1007/s40304-019-00188-1
Article

On Cyclic DNA Codes Over ${F}_2+u{F}_2+u^2{F}_2$

Author information +
History +
PDF

Abstract

In the present paper, we study the structure of cyclic DNA codes of even length over the ring ${F}_2+u{F}_2+u^2{F}_2$ where $u^3=0$. We investigate two presentations of cyclic codes of even length over ${F}_2+u{F}_2+u^2{F}_2$ satisfying the reverse constraint and the reverse-complement constraint.

Keywords

Cyclic DNA codes / Cyclic reversible codes / Watson–Crick model

Cite this article

Download citation ▾
Hojjat Mostafanasab, Ahmad Yousefian Darani. On Cyclic DNA Codes Over ${F}_2+u{F}_2+u^2{F}_2$. Communications in Mathematics and Statistics, 2021, 9(1): 39-52 DOI:10.1007/s40304-019-00188-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abualrub T, Ghrayeb A, Zeng X. Construction of cyclic codes over $GF(4)$ for DNA computing. J. Frankl. Inst.. 2006, 343 4–5 448-457

[2]

Abualrub T, Oehmke R. On the generators of ${Z}_4$ cyclic codes of length $2^e$. IEEE Trans. Inf. Theory. 2003, 49 2126-2133

[3]

Abualrub T, Siap I. Cyclic codes over the rings ${Z}_2 + u{Z}_2$ and ${Z}_2 + u{Z}_2 + u^2{Z}_2$. Des. Codes Cryptogr.. 2007, 42 273-287

[4]

Adleman L. Molecular computation of the solution to combinatorial problems. Science. 1994, 266 1021-1024

[5]

Bayram A, Oztas ES, Siap I. Codes over ${F}_v+u{F}_4$ and some DNA applications. Des. Codes Cryptogr.. 2015

[6]

Cengellenmis Y. On $(1-u^2)$-cyclic and cyclic codes over ${F}_p+u{F}_p+u^2{F}_p$. J. Disc. Math. Sci. Cryptogr.. 2009, 12 2 239-243

[7]

Cengellenmis Y. On some special codes over ${F}_p+u{F}_p+u^2{F}_p$. Appl. Math. Comput.. 2011, 218 720-722

[8]

Dinh HQ. Constacyclic codes of length $p^s$ over ${F}_{p^m} + u{F}_{p^m}$. J. Algebra. 2010, 324 940-950

[9]

Gaborit P, King OD. Linear construction for DNA codes. Theor. Comput. Sci.. 2005, 334 1–3 99-113

[10]

Guenda K, Gulliver TA. Construction of cyclic codes over ${F}_2 + u{F}_2$ for DNA computing. AAECC. 2013, 24 445-459

[11]

Guenda, K., Gulliver, T.A., Sole P.: On cyclic DNA codes. In: Proceedings of IEEE International Symposium on Information Theory, Istanbul, pp. 121–125 (2013)

[12]

Huffman WC, Pless V. Fundamentals of Error-Correcting Codes. 2003 Cambridge: Cambridge University Press

[13]

Liang J, Wang L. On cyclic DNA codes over ${F}_2+u{F}_2$. J. Appl. Math. Comput.. 2015

[14]

Lipton RJ. DNA solution of hard computational problems. Science. 1995, 268 542-545

[15]

Oztas ES, Siap I, Yildiz B. Reversible codes and applications to DNA. Lect. Notes Comput. Sci.. 2014, 8592 124-128

[16]

Pless VS, Qian Z. Cyclic codes and quadratic residue codes over ${Z}_4$. IEEE Trans. Inf. Theory. 1996, 42 5 1594-1600

[17]

Qian JF, Zhang LN, Zhu SX. Constacyclic and cyclic codes over ${F}_2+u{F}_2+u^2{F}_2$. IEICE Trans.. 2006, 89–A 6 1863-1865

[18]

Siap I, Abualrub T, Ghrayeb A. Cyclic DNA codes over the ring ${F}_2[u]/(u^2-1)$ based on the deletion distance. J. Frankl. Inst.. 2009, 346 731-740

[19]

Singh AK, Kewat PK. On cyclic codes over the ring ${Z}_p[u]/\langle u^k\rangle $. Des. Codes Cryptogr.. 2013

[20]

Yildiz B, Aydin N. On cyclic codes over $Z_4+uZ_4$ and their $Z_4$-images. Int. J. Inf. Cod. Theory. 2014, 2 4 226-237

[21]

Yildiz B, Karadeniz S. Linear codes over ${Z}_4+u{Z}_4$, MacWilliams identities, projections, and formally self-dual codes. Finite Fields Appl.. 2014, 27 24-40

[22]

Yildiz B, Siap I. Cyclic codes over ${F}_2[u]/\langle u^4-1\rangle $ and applications to DNA codes. Comput. Math. Appl.. 2012, 63 1169-1176

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/