The McCoy Condition on Skew Poincaré–Birkhoff–Witt Extensions

Armando Reyes , Camilo Rodríguez

Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 1 -21.

PDF
Communications in Mathematics and Statistics ›› 2021, Vol. 9 ›› Issue (1) : 1 -21. DOI: 10.1007/s40304-019-00184-5
Article

The McCoy Condition on Skew Poincaré–Birkhoff–Witt Extensions

Author information +
History +
PDF

Abstract

In this paper, we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincaré–Birkhoff–Witt extensions. As a consequence, we generalize several results about this notion considered in the literature for commutative rings and Ore extensions.

Keywords

McCoy ring / Reversible ring / Semicommutative ring / Zip ring / Skew Poincaré–Birkhoff–Witt extension

Cite this article

Download citation ▾
Armando Reyes, Camilo Rodríguez. The McCoy Condition on Skew Poincaré–Birkhoff–Witt Extensions. Communications in Mathematics and Statistics, 2021, 9(1): 1-21 DOI:10.1007/s40304-019-00184-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Annin S. Associated primes over skew polynomial rings. Commun. Algebra. 2002, 30 5 2511-2528

[2]

Artamonov A. Derivations of skew PBW extensions. Commun. Math. Stat.. 2015, 3 4 449-457

[3]

Artamonov V, Lezama O, Fajardo W. Extended modules and Ore extensions. Commun. Math. Stat.. 2016, 4 2 189-202

[4]

Baser M. Ore extensions of zip and reversible rings. Commun. Fac. Sci. Univ. Ank. Ser. A1. 2006, 55 1 1-6

[5]

Baser M, Kwak TK, Lee Y. The McCoy condition on skew polynomial rings. Commun. Algebra. 2009, 37 11 4026-4037

[6]

Beachy JA, Blair WD. Rings whose faithful left ideals are cofaithful. Pac. J. Math.. 1975, 58 1 1-13

[7]

Bell HE. Near-rings in which each element is a power of itself. Bull. Aust. Math. Soc.. 1970, 2 3 363-368

[8]

Bell A, Goodearl K. Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions. Pac. J. Math.. 1988, 131 1 13-37

[9]

Camillo V, Nielsen PP. McCoy rings and zero-divisors. J. Pure Appl. Algebra. 2008, 212 3 599-615

[10]

Cohn PM. Reversible rings. Bull. Lond. Math. Soc.. 1999, 31 6 641-648

[11]

Cortes, W.: Skew polynomial extensions over zip rings. Int. J. Math. Math. Sci. 496720, (2008). https://doi.org/10.1155/2008/496720

[12]

Curado EMF, Hassouni Y, Rego-Monteiro MA, Rodrigues LMCS. Generalized Heisenberg algebra and algebraic method: the example of an infinite square-well potential. Phys. Lett. A.. 2008, 372 19 3350-3355

[13]

Du XN. On semicommutative rings and strongly regular rings. J. Math. Res. Expos.. 1994, 14 1 57-60

[14]

Faith C. Rings with zero intersection property on annihilators: zip rings. Publ. Math.. 1989, 33 2 329-332

[15]

Faith C. Annihilator ideals, associated primes and kasch-mccoy commutative rings. Commun. Algebra. 1991, 19 7 1867-1892

[16]

Ferran C. Zip rings and Malcev domains. Commun. Algebra. 1991, 19 7 1983-1991

[17]

Gallego C, Lezama O. Gröbner bases for ideals of $\sigma $-PBW extensions. Commun. Algebra. 2011, 39 1 50-75

[18]

Gallego C, Lezama O. Projective modules and Gröbner bases for skew PBW extensions. Diss. Math.. 2017, 521 1-50

[19]

Giaquinto A, Zhang JJ. Quantum Weyl Algebras. J. Algebra. 1995, 176 3 861-881

[20]

Habeb JM. A note on zero commutative and duo rings. Math. J. Okayama Univ.. 1990, 32 1 73-76

[21]

Habibi M, Moussavi A, Alhevaz A. The McCoy condition on Ore extensions. Commun. Algebra. 2013, 41 1 124-141

[22]

Hayashi T. $Q$-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys.. 1990, 127 1 129-144

[23]

Hirano Y. On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra. 2002, 168 1 45-52

[24]

Hong CY, Kim NK, Kwak TK. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra. 2000, 151 3 215-226

[25]

Hong CY, Kim NK, Kwak TK, Lee Y. Extensions of zip rings. J. Pure Appl. Algebra. 2005, 195 3 231-242

[26]

Huh C, Lee Y, Smoktunowicz A. Armendariz rings and semicommutative rings. Comm. Algebra. 2002, 30 2 751-761

[27]

Jannussis, A.: New Lie-deformed Heisenberg algebra. In: Lie-Lobachevski Colloquium on Lie Groups and Homogeneous Spaces, Tattu, pp. 26–30 Oct (1992)

[28]

Jannussis A, Leodaris A, Mignani R. Non-Hermitian realization of a Lie-deformed Heisenberg algebra. Phys. Lett. A.. 1995, 197 3 187-191

[29]

Jategaonkar AV. Localization in Noetherian rings, London Mathematical Society Lecture Note Series, 98. 1986 Cambridge: Cambridge University Press

[30]

Kim NK, Lee Y. Extensions of reversible rings. J. Pure Appl. Algebra. 2003, 185 1–3 207-223

[31]

Krempa J. Some examples of reduced rings. Algebra Colloq.. 1996, 3 4 289-300

[32]

Lezama O, Acosta JP, Chaparro C, Ojeda I, Venegas C. Ore and Goldie theorems for skew PBW extensions. Asian Eur. J. Math.. 2013, 6 4 1350061-1-1350061-20

[33]

Lezama O, Acosta JP, Reyes A. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argent.. 2015, 56 2 39-55

[34]

Lezama O, Latorre E. Non-commutative algebraic geometry of semi-graded rings. Int. J. Algebra Comput.. 2017, 27 4 361-389

[35]

Lezama O, Reyes A. Some homological properties of skew PBW extensions. Commun. Algebra. 2014, 42 3 1200-1230

[36]

Marks G. A taxonomy of 2-primal rings. J. Algebra. 2003, 266 2 494-520

[37]

Mason G. Reflexive ideals. Commun. Algebra. 1981, 9 17 1709-1724

[38]

McCoy NH. Remarks on divisors of zero. Am. Math. Monthly. 1942, 49 5 286-295

[39]

Nielsen PP. Semi-commutativity and the McCoy condition. J. Algebra. 2006, 298 1 134-141

[40]

Niño D, Reyes A. Some ring theoretical properties of skew Poincaré–Birkhoff–Witt extensions. Bol. Mat.. 2017, 24 2 131-148

[41]

Ore O. Theory of non-commutative polynomials. Ann. Math. Second Series. 1933, 34 3 480-508

[42]

Reyes A. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat.. 2015, 33 2 173-189

[43]

Reyes A. Armendariz modules over skew pbw extensions. Commun. Algebra. 2019, 47 3 1248-1270

[44]

Reyes A, Suárez H. Some remarks about the cyclic homology of skew PBW extensions. Cienc. Desarro.. 2016, 7 2 99-107

[45]

Reyes A, Suárez H. A note on zip and reversible skew PBW extensions. Bol. Mat. (N.S.). 2016, 23 1 71-79

[46]

Reyes A, Suárez H. Bases for quantum algebras and skew Poincaré–Birkhoff–Witt extensions. Momento. 2017, 54 1 54-75

[47]

Reyes A, Suárez H. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci.. 2017, 101 6 1207-1228

[48]

Reyes A, Suárez H. Enveloping algebra and skew Calabi–Yau algebras over skew Poincaré–Birkhoff–Witt extensions. Far East J. Math. Sci.. 2017, 102 2 373-397

[49]

Reyes A, Suárez H. $\sigma $-PBW extensions of skew Armendariz rings. Adv. Appl. Clifford Algebr.. 2017, 27 4 3197-3224

[50]

Reyes A, Suárez H. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argent.. 2018, 59 1 157-178

[51]

Reyes A, Suárez H. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom.. 2019, 60 2 197-216

[52]

Reyes, A., Suárez, H.: Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat. (2019), (in press)

[53]

Reyes A, Suárez Y. On the ACCP in skew Poincaré–Birkhoff–Witt extensions. Beitr Algebra Geom.. 2018, 59 4 625-643

[54]

Suárez H, Reyes A. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci.. 2017, 101 2 301-320

[55]

Suárez H, Lezama O, Reyes A. Calabi-Yau property for graded skew PBW extensions. Rev. Colomb. Mat.. 2017, 51 2 221-239

[56]

Tuganbaev AA. Rings close to regular mathematics and its applications. 2002 New York: Kluwer Academic Publishers

[57]

Zelmanowitz JM. The finite intersection property on annihilator right ideals. Proc. Am. Math. Soc.. 1976, 57 2 213-216

Funding

Universidad Nacional de Colombia(30366)

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/