On Expansions of Ricci Flat ALE Metrics in Harmonic Coordinates About the Infinity

Youmin Chen

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (1) : 63 -90.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (1) : 63 -90. DOI: 10.1007/s40304-019-00183-6
Article

On Expansions of Ricci Flat ALE Metrics in Harmonic Coordinates About the Infinity

Author information +
History +
PDF

Abstract

In this paper, we study the expansions of Ricci flat metrics in harmonic coordinates about the infinity of ALE (Asymptotically Local Euclidean) manifolds.

Keywords

ALE / Ricci flat / Harmonic coordinates / Asymptotic expansion

Cite this article

Download citation ▾
Youmin Chen. On Expansions of Ricci Flat ALE Metrics in Harmonic Coordinates About the Infinity. Communications in Mathematics and Statistics, 2020, 8(1): 63-90 DOI:10.1007/s40304-019-00183-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson MT. Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc.. 1989, 2 3 455-490

[2]

Axler S, Bourdon P, Ramey W. Harmonic Function Theory, Graduate Texts in Mathematics. 2001 2 New York: Springer

[3]

Bando S. Bubbling out of einstein manifolds. Tohoku Math. J. Second Ser.. 1990, 42 2 205-216

[4]

Bando S, Kasue A, Nakajima H. On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math.. 1989, 97 2 313-349

[5]

Bartnik R. The mass of an asymptotically flat manifold. Commun. Pure Appl. Math.. 1986, 39 5 661-693

[6]

Chruściel PT, Delay E, Lee JM, Skinner DN . Boundary regularity of conformally compact Einstein metrics. J. Differ. Geom.. 2005, 69 1 111-136

[7]

Fefferman C, Graham CR. The Ambient Metric (AM-178). 2011 Princeton: Princeton University Press

[8]

Fefferman Charles L. Monge-Ampere Equations, the Bergman Kernel, and Geometry of Pseudoconvex Domains. The Annals of Mathematics. 1976, 103 3 395

[9]

Graham, C.R.: Volume and area renormalizations for conformally compact Einstein metrics. arXiv preprint arXiv:math/9909042 (1999)

[10]

Han, Q., Jiang, X.: Boundary expansions for minimal graphs in the hyperbolic space. arXiv preprint arXiv:1412.7608 (2014)

[11]

Han, Q. Wang, Y.: Boundary expansions for constant mean curvature surfaces in the hyperbolic space. arXiv preprint arXiv:1608.07803 (2016)

[12]

Helliwell DW. Boundary regularity for conformally compact Einstein metrics in even dimensions. Commun. Partial Differ. Equ.. 2008, 33 5 842-880

[13]

Jeffres T, Mazzeo R, Rubinstein YA. Kähler–Einstein metrics with edge singularities. Ann. Math.. 2016, 183 1 95-176

[14]

Jian H, Wang X. Optimal boundary regularity for nonlinear singular elliptic equations. Adv. Math.. 2014, 251 111-126

[15]

Jian H, Wang X-J . Bernstein theorem and regularity for a class of Monge–Ampère equations. J. Differ. Geom.. 2013, 93 3 431-469

[16]

Kichenassamy S. On a conjecture of Fefferman and Graham. Adv. Math.. 2004, 184 2 268-288

[17]

Korevaar N, Mazzeo R, Pacard F, Schoen R. Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math.. 1999, 135 2 233-272

[18]

Lee J, Melrose R. Boundary behavior of the complex Monge–Ampere equation. Acta Math.. 1982, 148 1 159-192

[19]

Lin FH. Asymptotic behavior of area-minimizing currents in hyperbolic space. Commun. Pure Appl. Math.. 1989, 42 3 229-242

[20]

Lin FH. On the Dirichlet problem for minimal graphs in hyperbolic space. Invent. Math.. 1989, 96 3 593-612

[21]

Mazzeo R. Regularity for the singular Yamabe problem. Indiana Univ. Math. J.. 1991, 40 4 1277-1299

[22]

Meyers N. An expansion about infinity for solutions of linear elliptic equations. J. Math. Mech.. 1963, 12 247-264

[23]

Nakajima H. Hausdorff convergence of Einstein 4-manifolds. J. Fac. Sci. Univ. Tokyo. 1988, 35 411-424

[24]

Ni L, Shi Y, Tam L-F. Ricci flatness of asymptotically locally Euclidean metrics. Trans. Am. Math. Soc.. 2003, 355 5 1933-1959

[25]

Yin H. Boundary regularity of harmonic maps from hyperbolic space into nonpositively curved manifolds. Pac. J. Math. 2007, 232 491-509

[26]

Yin, H.: Analysis aspects of Ricci flow on conical surfaces. arXiv preprint arXiv:1605.08836 (2016)

[27]

Yin, H., Zheng, K.: Expansion formula for complex Monge–Ampere equation along cone singularities. arXiv preprint arXiv:1609.03111 (2016)

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/