Estimation in the Complementary Exponential Geometric Distribution Based on Progressive Type-II Censored Data

Özlem Gürünlü Alma , Reza Arabi Belaghi

Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (4) : 409 -441.

PDF
Communications in Mathematics and Statistics ›› 2020, Vol. 8 ›› Issue (4) : 409 -441. DOI: 10.1007/s40304-019-00181-8
Article

Estimation in the Complementary Exponential Geometric Distribution Based on Progressive Type-II Censored Data

Author information +
History +
PDF

Abstract

Complementary exponential geometric distribution has many applications in survival and reliability analysis. Due to its importance, in this study, we are aiming to estimate the parameters of this model based on progressive type-II censored observations. To do this, we applied the stochastic expectation maximization method and Newton–Raphson techniques for obtaining the maximum likelihood estimates. We also considered the estimation based on Bayesian method using several approximate: MCMC samples, Lindely approximation and Metropolis–Hasting algorithm. In addition, we considered the shrinkage estimators based on Bayesian and maximum likelihood estimators. Then, the HPD intervals for the parameters are constructed based on the posterior samples from the Metropolis–Hasting algorithm. In the sequel, we obtained the performance of different estimators in terms of biases, estimated risks and Pitman closeness via Monte Carlo simulation study. This paper will be ended up with a real data set example for illustration of our purpose.

Keywords

Bayesian analysis / Complementary exponential geometric (CEG) distribution / Progressive type-II censoring / Maximum likelihood estimators / SEM algorithm / Shrinkage estimator

Cite this article

Download citation ▾
Özlem Gürünlü Alma, Reza Arabi Belaghi. Estimation in the Complementary Exponential Geometric Distribution Based on Progressive Type-II Censored Data. Communications in Mathematics and Statistics, 2020, 8(4): 409-441 DOI:10.1007/s40304-019-00181-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamidis K, Loukas S. A lifetime distribution with decreasing failure rate. Stat. Probab. Lett.. 1998, 39 35-42

[2]

Arabi Belaghi R, Arashi M, Tabatabaey SMM. On the construction of preliminary test estimator based on record values for the Burr XII model. Commun. Stat. Theory Methods. 2015, 44 1-23

[3]

Arabi Belaghi R, Arashi M, Tabatabaey SMM. Improved estimators of the distribution function based on lower record values. Stat. Pap.. 2015, 56 453-473

[4]

Arabi Belaghi, R., Valizadeh Gamchi, F., Bevrani, H., Gurunlu Alma, O.: Estimation on Burr type III by progressive censoring using the EM and SEM algorithms. In: 13th Iranian Statistical Conference, Shahid Bahonar University of Kerman, Iran, 24–26 Aug 2016

[5]

Bancroft TA. On biases in estimation due to the use of preliminary tests of significance. Ann. Math. Stat.. 1944, 15 190-204

[6]

Basu A, Klein J. Crowley J, Johson RA. Some recent development in competing risks theory. Survival Analysis. 1982 Hayward: IMS. 216-229

[7]

Celeux G, Diebolt J. The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Stat. Q.. 1985, 2 73-82

[8]

Chen MH, Shao QM. Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Stat.. 1999, 8 69-92

[9]

Crowder M, Kimber A, Smith R, Sweeting T. Statistical Analysis of Reliability Data. 1991 London: Chapman and Hall

[10]

Cox DR, Oakes D. Analysis of Survival Data. 1984 London: Chapman and Hall

[11]

Day S, Singh S, Tripathi MY, Asgharzadeh A. Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat. Methodol.. 2016, 32 185-202

[12]

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 1977, 39 1 1-38

[13]

Dey S, Dey T. On progressively censored generalized inverted exponential distribution. J. Appl. Stat.. 2014, 41 2557-2576

[14]

Goetghebeur E, Ryan L. Analysis of competing risks survival data when some failure types are missing. Biometrika. 1995, 82 4 821-833

[15]

Kibria BMG. Performance of the shrinkage preliminary tests ridge regression estimators based on the conflicting of W, LR and LM tests. J. Stat. Comput. Simul.. 2004, 74 11 793-810

[16]

Kibria BMG, Saleh AKME. Preliminary test estimation of the parameters of exponential and Pareto distributions for censored samples. Stat. Pap.. 2010, 51 757-773

[17]

Kibria BMG, Saleh AKME. Optimum critical value for pre-test estimators. Commun. Stat. Theory Methods. 2006, 35 2 309-320

[18]

Kibria BMG, Saleh AKME. Comparison between Han-Bancroft and Brook method to determine the optimum significance level for pre-test estimator. J. Prob. Stat. Sci.. 2005, 3 293-303

[19]

Kibria BMG, Saleh AKME. Preliminary test ridge regression estimators with Student’s t errors and conflicting test-statistics. Metrika. 2004, 59 2 105-124

[20]

Kibria BMG, Saleh AKME. Performance of shrinkage preliminary test estimator in regression analysis. Jahangrinagar Rev.. 1993, A17 133-148

[21]

Kundu D, Pradhan B. Bayesian inference and life testing plans for generalized exponential distribution. Sci. China Math.. 2009, 52 1373-1388

[22]

Lawless JF. Statistical Models and Methods for Lifetime Data. 2003 2 New York: Wiley

[23]

Lieblein J, Zelen M. Statistical investigation of the fatigue life of deep-groove ball bearings. J. Res. NBS. 1956, 57 273-316

[24]

Lindley DV. Approximate bayesian methods. Trabajos de estadística y de investigaciónoperativa. 1980, 31 1 223-245

[25]

Little RJA, Rubin DB. Kotz S, Johnson NL. Incomplete data. Encyclopedia of Statistical Sciences. 1983 New York: Wiley. 46-53

[26]

Louzada F, Roman M, Cancho VG. The complementary exponential geometric distribution: model, properties, and a comparison with its counterpart. Comput. Stat. Data Anal.. 2011, 55 2516-2524

[27]

Lu K, Tsiatis AA. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure. Biometrics. 2001, 57 4 1191-1197

[28]

Lu K, Tsiatis AA. Comparison between two partial likelihood approaches for the competing risks model with missing cause of failure. Lifetime Data Anal.. 2005, 11 1 29-40

[29]

Louis TA. Finding the observed information matrix using the EM algorithm. J. R. Stat. Soc. Ser. B. 1982, 44 226-233

[30]

McLachlan GJ, Krishnan T. The EM Algorithm and Extensions. 1997 New York: Wiley

[31]

Ng HKT, Chan PS, Balakrishnan N. Estimation of parameters from progressively censored data using EM algorithm. Comput. Stat. Data Anal.. 2002, 39 4 371-386

[32]

Nielsen FS. The stochastic EM algorithm: estimation and asymptotic results. Bernoulli. 2000, 6 457-489

[33]

Parsian A, Kirmani SNUA. Wan AmanUllah ATK, Chaturvedi A. Estimation under LINEX loss function. handbook of Applied Economics and Statistical Inference. 2002 New York: Marcel Dekker. 53-76

[34]

Reiser B, Guttman I, Lin DKJ, Guess FM, Usher HS. Bayesian inference for masked system lifetime data. Appl. Stat.. 1995, 44 79-90

[35]

Saleh AKME. Theory of Preliminary Test and Stein-Type Estimation with Applications. 2006 New York: Wiley

[36]

Saleh AKME, Kibria BMG. Performance of some new preliminary test ridge regression estimators and their properties. Commun. Stat. Theory Methods. 1993, 22 10 2747-2764

[37]

Saleh AKME, Sen PK. Nonparametric estimation of location parameter after a preliminary test on regression. Ann. Stat.. 1978, 6 154-168

[38]

Saleh AKME, Arashi M, Tabatabaey SMM. Statistical Inference for Models with Multivariate t-Distributed Errors. 2014 Hoboken: Wiley

[39]

Singh S, Tripathi YMS, Wu J. On estimating parameters of a progressively censored lognormal distribution. J. Stat. Comput. Simul.. 2015, 85 2015 1071-1089

[40]

Zhang M, Zhisheng Y, Min X. A stochastic EM algorithm for progressively censored data analysis. Qual. Reliab. Eng. Int.. 2013, 30 711-722

Funding

tubitak

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/