Simple Singular Whittaker Modules Over the Schrödinger Algebra

Yan-an Cai , Xiufu Zhang

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (4) : 475 -483.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (4) : 475 -483. DOI: 10.1007/s40304-019-00180-9
Article

Simple Singular Whittaker Modules Over the Schrödinger Algebra

Author information +
History +
PDF

Abstract

There are no simple singular Whittaker modules over most of important algebras, such as simple complex finite-dimensional Lie algebras, affine Kac–Moody Lie algebras, the Virasoro algebra, the Heisenberg–Virasoro algebra and the Schrödinger–Witt algebra. In this paper, however, we construct simple singular Whittaker modules over the Schrödinger algebra. Moreover, simple singular Whittaker modules over the Schrödinger algebra are classified. As a result, simple modules for the Schrödinger algebra which are locally finite over the positive part are completely classified. We also give characterizations of simple highest weight modules and simple singular Whittaker modules.

Keywords

Schrödinger algebra / Highest weight modules / Singular Whittaker modules / Simple modules / Locally finite modules

Cite this article

Download citation ▾
Yan-an Cai, Xiufu Zhang. Simple Singular Whittaker Modules Over the Schrödinger Algebra. Communications in Mathematics and Statistics, 2019, 7(4): 475-483 DOI:10.1007/s40304-019-00180-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Block R. The irreducible representations of the Lie algebra $sl_2$ and of the Weyl algebra. Adv. Math.. 1981, 39 69-110

[2]

Bavula VV, Lu TJ. The universal enveloping algebra $U(sl_2 \ltimes \, {V}_2)$, its prime spectrum and a classification of its simple weight modules. Lie Theory. 2018, 28 2 525-560

[3]

Ballesteros A, Herranz FJ, Parashar P. $(1+1)$ Schrödinger Lie bialgebras and their Poisson–Lie groups. J. Phys. A. 2000, 33 3445-3465

[4]

Batra P, Mazorchuk V. Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra. 2011, 215 7 1552-1568

[5]

Barut AO, Raczka R. Theory of Group Representations and Applications. 1980 2 Warszawa: PWN

[6]

Barut AO, Xu BW. Conformal covariance and the probability interpretation of wave equations. Phys. Lett. A. 1981, 82 5 218-220

[7]

Chen Q, Cai YA. Modules over algebras related to the Virasoro algebra. Int. J. Math.. 2015, 26 9 1550070

[8]

Cai YA, Cheng YS, Shen R. Quasi-Whittaker modules for the Schrödinger algebra. Linear Algebra Appl.. 2014, 463 16-32

[9]

Dobrev V, Doebner HD, Mrugalla C. Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations. Rep. Math. Phys.. 1997, 39 201-218

[10]

Dubsky B. Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra. Linear Algebra Appl.. 2014, 443 204-214

[11]

Dubsky B, RC, Mazorchuk V, Zhao K. Category ${\cal{O}} $ for the Schrödinger algebra. Linear Algebra Appl.. 2014, 460 17-50

[12]

Kostant B. On Whittaker vectors and representation theory. Invent. Math.. 1978, 48 101-184

[13]

RC, Mazorchuk V, Zhao K. Classification of simple weight modules over the 1-spatial ageing algebra. Algebras Represent. Theory. 2015, 18 2 381-395

[14]

RC, Mazorchuk V, Zhao KM. On simple modules over conformal Galilei algebras. J. Pure Appl. algebra. 2014, 218. 10 1885-1899

[15]

Mathieu O. Classification of irreducible weight modules. Ann. Inst. Fourier (Grenoble). 2000, 50 2 537-592

[16]

Mazorchuk V. Lectures on $sl_2(\mathbb{C})$-Modules. 2010 London: Imperial College

[17]

Mazorchuk V, Zhao KM. Characterization of simple highest weight modules. Can. Math. Bull.. 2013, 56 3 606-614

[18]

Niederer U. The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta. 1972, 45 802-810

[19]

Wu YZ, Zhu LS. Simple weight modules for Schrödinger algebra. Linear Algebra Appl.. 2013, 438 559-563

[20]

Zhang XF, Cheng YS. Simple Schrödinger modules which are locally finite over the positive part. J. Pure Appl. Algebra. 2015, 219 7 2799-2815

[21]

Zhang XF, Tan SB, Lian HF. Whittaker modules for the Schrödinger-Witt algebra. J. Math. Phys.. 2010, 51 8 083524

Funding

National Natural Science Foundation of China(11571145)

Society of the Friendly Sons of St. Patrick for the Relief of Emigrants from Ireland(2016M600140)

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/