Numerical Integration Over Implicitly Defined Domains with Topological Guarantee

Tianhui Yang , Ammar Qarariyah , Hongmei Kang , Jiansong Deng

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (4) : 459 -474.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (4) : 459 -474. DOI: 10.1007/s40304-019-00178-3
Article

Numerical Integration Over Implicitly Defined Domains with Topological Guarantee

Author information +
History +
PDF

Abstract

Numerical integration over the implicitly defined domains is challenging due to topological variances of implicit functions. In this paper, we use interval arithmetic to identify the boundary of the integration domain exactly, thus getting the correct topology of the domain. Furthermore, a geometry-based local error estimate is explored to guide the hierarchical subdivision and save the computation cost. Numerical experiments are presented to demonstrate the accuracy and the potential of the proposed method.

Keywords

Isogeometric analysis / Numerical integration / Implicitly defined domains / Topological guarantee / Interval arithmetic / Local error estimate / Hierarchical subdivision

Cite this article

Download citation ▾
Tianhui Yang, Ammar Qarariyah, Hongmei Kang, Jiansong Deng. Numerical Integration Over Implicitly Defined Domains with Topological Guarantee. Communications in Mathematics and Statistics, 2019, 7(4): 459-474 DOI:10.1007/s40304-019-00178-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barendrecht PJ, Bartoň M, Kosinka J. Efficient quadrature rules for subdivision surfaces in isogeometric analysis. Comput. Methods Appl. Mech. Eng.. 2018, 333 128-149

[2]

Bartoň M, Calo VM. Gauss-galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis. Comput. Aided Des.. 2017, 82 57-67

[3]

Berntsen J, Espelid TO, Genz A. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Softw. (TOMS). 1991, 17 4 437-451

[4]

Caprani O, Madsen K, Rall LB. Integration of interval functions. SIAM J. Math. Anal.. 1981, 12 3 321-341

[5]

Cheng KW, Fries T-P. Higher-order xfem for curved strong and weak discontinuities. Int. J. Numer. Methods Eng.. 2010, 82 5 564-590

[6]

Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. 2009 New York: Wiley

[7]

Davis PJ, Rabinowitz P. Methods of Numerical Integration. 2007 North Chelmsford: Courier Corporation

[8]

Dokken, T., Skytt, V., Barrowclough, O.: Trivariate spline representations for computer aided design and additive manufacturing. arXiv preprint arXiv:1803.05756 (2018)

[9]

Dolbow J, Belytschko T. Numerical integration of the galerkin weak form in meshfree methods. Comput. Mech.. 1999, 23 3 219-230

[10]

Drescher L, Heumann H, Schmidt K. A high order method for the approximation of integrals over implicitly defined hypersurfaces. SIAM J. Numer. Anal.. 2017, 55 6 2592-2615

[11]

Edalat A, Krznaric M. Numerical Integration with Exact Real Arithmetic. 1999 Berlin: Springer

[12]

Engwer, C., Nüßing, A.: Geometric integration over irregular domains with topologic guarantees. arXiv preprint arXiv:1601.03597 (2016)

[13]

Farin GE. Curves and Surfaces for CAGD: A Practical Guide. 2002 Burlington: Morgan Kaufmann

[14]

Gautschi W, Notaris SE. Gauss–kronrod quadrature formulae for weight functions of bernstein–szegö type. J. Comput. Appl. Math.. 1989, 25 2 199-224

[15]

Gomes A, Voiculescu I, Jorge J, Wyvill B, Galbraith C. Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. 2009 Berlin: Springer

[16]

Hartshorne R. Algebraic Geometry. 2013 Berlin: Springer

[17]

Hollig K. Finite Element Methods with B-Splines. 2003 New Delhi: Siam

[18]

Höllig K, Hörner J. Programming finite element methods with weighted b-splines. Comput. Math. Appl.. 2015, 70 7 1441-1456

[19]

Huang Pu, Wang Charlie CL, Chen Yong. Intersection-free and topologically faithful slicing of implicit solid. J. Comput. Inf. Sci. Eng.. 2013, 13 2 021009

[20]

Li Z, Ito K. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. 2006 New Delhi: Siam

[21]

Martin R, Shou H, Voiculescu I, Bowyer A, Wang G. Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des.. 2002, 19 7 553-587

[22]

Mitchell, D.P.: Robust ray intersection with interval arithmetic. In: Proceedings of Graphics Interface, vol. 90, pp. 68–74 (1990)

[23]

Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng.. 1999, 46 1 131-150

[24]

Moore R. Interval Arithmetic. 1966 Englewood Cliffs: Prentice-Hall

[25]

Moore RE. Methods and Applications of Interval Analysis. 1979 Philadelphia: Siam

[26]

Moore RE. Reliability in Computing: The Role of Interval Methods in Scientific Computing. 2014 Amsterdam: Elsevier

[27]

Müller B, Kummer F, Oberlack M. Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng.. 2013, 96 8 512-528

[28]

Olshanskii MA, Safin D. Numerical integration over implicitly defined domains for higher order unfitted finite element methods. Lobachevskii J. Math.. 2016, 37 5 582-596

[29]

Peskin CS. The immersed boundary method. Acta Numer.. 2002, 11 479-517

[30]

Press WH. Numerical Recipes: The Art of Scientific Computing. 2007 3 Cambridge: Cambridge University Press

[31]

Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A. Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng.. 2012, 249 104-115

[32]

Rvachev VL, Shevchenko AN, Veretel’nik VV. Numerical integration software for projection and projection-grid methods. Cybern. Syst. Anal.. 1994, 30 1 154-158

[33]

Saye RI. High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput.. 2015, 37 2 A993-A1019

[34]

Shapiro V, Tsukanov I. The architecture of sage—a meshfree system based on rfm. Eng. Comput.. 2002, 18 4 295-311

[35]

Shou, H., Lin, H., Martin, R., Wang, G.: Modified affine arithmetic is more accurate than centered interval arithmetic or affine arithmetic. In: Mathematics of Surfaces, Springer, pp. 355–365 (2003)

[36]

Sukumar N, Chopp DL, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng.. 2001, 190 46–47 6183-6200

[37]

Thiagarajan V. Shape Aware Quadratures. 2017 Madison: The University of Wisconsin-Madison

[38]

Thiagarajan V, Shapiro V. Adaptively weighted numerical integration over arbitrary domains. Comput. Math. Appl.. 2014, 67 9 1682-1702

[39]

Thiagarajan V, Shapiro V. Adaptively weighted numerical integration in the finite cell method. Comput. Methods Appl. Mech. Eng.. 2016, 311 250-279

[40]

Thiagarajan V, Shapiro V. Shape aware quadratures. J. Comput. Phys.. 2018, 374 1239

[41]

Tornberg A-K, Engquist B. Numerical approximations of singular source terms in differential equations. J. Comput. Phys.. 2004, 200 2 462-488

[42]

Upreti K, Subbarayan G. Signed algebraic level sets on nurbs surfaces and implicit boolean compositions for isogeometric cad-cae integration. Comput. Aided Des.. 2017, 82 112-126

[43]

Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat. Mater.. 2015, 14 1 23

[44]

Wolfe MA. Interval enclosures for a certain class of multiple integrals. Appl. Math. Comput.. 1998, 96 2–3 145-159

[45]

Xu G, Kwok T-H, Wang CCL. Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization. Comput. Aided Des.. 2017, 91 1-13

[46]

Xu, J., Sun, N., Shu, L., Rabczuk, T., Xu, G.: An improved isogeometric analysis method for trimmed geometries. arXiv preprint arXiv:1707.00323 (2017)

Funding

National Natural Science Foundation of China(No.11771420)

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/