Special Flow, Weak Mixing and Complexity

Wen Huang , Leiye Xu

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 85 -122.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 85 -122. DOI: 10.1007/s40304-018-0166-5
Article

Special Flow, Weak Mixing and Complexity

Author information +
History +
PDF

Abstract

We focus on the complexity of a special flow built over an irrational rotation of the unit circle and under a roof function on the unit circle. We construct a weak mixing minimal special flow with bounded topological complexity. We also prove that if the roof function is $C^\infty $, then the special flow has sub-polynomial topological complexity and the time one map meets the condition of Sarnak’s conjecture.

Keywords

Special flow / Weak mixing / Sub-polynomial complexity / Bounded complexity

Cite this article

Download citation ▾
Wen Huang, Leiye Xu. Special Flow, Weak Mixing and Complexity. Communications in Mathematics and Statistics, 2019, 7(1): 85-122 DOI:10.1007/s40304-018-0166-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanchard F, Host B, Maass A. Topological complexity. Ergod. Theory Dyn. Syst.. 2000, 20 3 641-662

[2]

Bowen R, Walters P. Expansive one-parameter flows. J. Differ. Equ.. 1972, 12 180-193

[3]

Davenport H. On some infinite series involving arithmetical functions II. Quat. J. Math.. 1937, 8 313-320

[4]

Fayad B. Polynomial decay of correlations for a class of smooth flows on the two torus. Bull. Soc. Math. France. 2001, 129 4 487-503

[5]

Fayad B. Weak mixing for reparameterized linear flows on the torus. Ergod. Theory Dyn. Syst.. 2002, 22 1 187-201

[6]

Fayad, B., Katok, A., Windsor, A.: Mixed spectrum reparameterizations of linear flows on ${\mathbb{T}}^2$. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1(4), 521–537, 644(2001)

[7]

Fayad B, Windsor A. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. J. Mod. Dyn.. 2007, 1 1 107-122

[8]

Ferenczi S. Measure-theoretic complexity of ergodic systems. Israel J. Math.. 1997, 100 1 189-207

[9]

Fraczek K, Lemańczyk M. A class of special flows over irrational rotations which is disjoint from mixing flows. Ergod. Theory Dyn. Syst.. 2004, 24 4 1083-1095

[10]

Fraczek K, Lemańczyk M. On mild mixing of special flows over irrational rotations under piecewise smooth functions. Ergod. Theory Dyn. Syst.. 2006, 26 3 719-738

[11]

Fraczek K, Lemańczyk M, Lesigne E. Mild mixing property for special flows under piecewise constant functions. Dis. Contin. Dyn. Syst.. 2007, 19 4 691-710

[12]

Furstenberg H. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory. 1967, 1 1-49

[13]

Furstenberg H, Keynes H, Shapiro L. Prime flows in topological dynamics. Israel J. Math.. 1973, 14 26-38

[14]

Gottschalk, W., Hedlund, G.: Topological Dynamics. Amer. Math. Soc. Colloq., vol. 36, Providence, R.I.(1955)

[15]

Huang, W., Wang, Z., Ye, X.: Measure complexity and Möbius disjointness, preprint. arXiv:1707.06345

[16]

Huang, W., Li, J., Thouvent, J. P., Xu, L., Ye, X.: Bounded complexity, mean equicontinuity and discrete spectrum, preprint. arXiv:1806.02980

[17]

Katok A. Lyapunov exponents, entropy and the periodic orbits for diffeomorphisms. Inst. Hautes tudes Sci. Publ. Math.. 1980, 51 137-173

[18]

Khanin KM. Mixing for area-preserving flows on the two-dimensional torus. J. Mod. Phys. B. 1996, 10 18–19 2167-2188

[19]

Khinchin, A. Y.: Continued Fractions, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY. With a preface by B. V. Gnedenko; Reprint of the 1964 translation (1997)

[20]

Kochergin AV. On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus. Dokl. Akad. Nauk SSSR. 1972, 205 949-952

[21]

Kochergin ,A.V.: A mixing special flow over a rotation of the circle with an almost Lipschitz function. (Russian) Mat. Sb. 193(3), 51–78(2002); translation in Sb. Math. 193(3–4), 359–385(2002)

[22]

Kolmogorov AN. On dynamical systems with an integral invariant on the torus. Doklady Akad. Nauk SSSR (N.S.)). 1953, 93 763-766

[23]

Lemańczyk M. Sur l’absence de mlange pour des flots spciaux au dessus d’une rotation irrationelle. Colloq. Math.. 2000, 84 85 29-41

[24]

Liu J, Sarnak P. The Möbius function and distal flows. Duke Math. J.. 2015, 164 7 1353-1399

[25]

Qiao Y. Topological complexity, minimality and systems of order two on torus. Sci. China Math.. 2016, 59 503-514

[26]

Sarnak, P.: Three lectures on the Möbius function, randomness and dynamics. Lecture notes, IAS (2009)

[27]

Sinai, Y.G., Khanin, K.M.: Mixing of some classes of special flows over rotations of the circle. (Russian) Funktsional. Anal. i Prilozhen. 26(3), 1–21(1992); translation in Funct. Anal. Appl. 26(3), 155–169(1992)

[28]

Šklover MD. Classical dynamical systems on the torus with continuous spectrum. Izv. Vysš. Učebn. Zaved. Matematika. 1967, 65 10 113-124

[29]

Vershik A. Scaling entropy and automorphisms with pure point spectrum. St. Petersburg Math. J.. 2012, 23 1 75-91

[30]

Vershik A, Zatitskiy P, Petrov F. Geometry and dynamics of admissible metrics in measure spaces. Cent. Eur. J. Math.. 2013, 11 3 379-400

[31]

Von Neumann J. Zur Operatorenmethode in der klassischen Mechanik. Ann. Math.. 1932, 33 3 587-642

AI Summary AI Mindmap
PDF

358

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/