On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application

Jian Wang

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (4) : 493 -508.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (4) : 493 -508. DOI: 10.1007/s40304-018-0163-8
Article

On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application

Author information +
History +
PDF

Abstract

We establish explicit and sharp on-diagonal heat kernel estimates for Schrödinger semigroups with unbounded potentials corresponding to a large class of symmetric jump processes. The approach is based on recent developments on the two-sided (Dirichlet) heat kernel estimates and intrinsic contractivity properties for symmetric jump processes. As a consequence, we present a more direct argument to yield asymptotic behaviors for eigenvalues of associated nonlocal operators.

Keywords

Schrödinger semigroup / (Dirichlet) heat kernel / Intrinsic contractivity property / Eigenvalue

Cite this article

Download citation ▾
Jian Wang. On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application. Communications in Mathematics and Statistics, 2018, 6(4): 493-508 DOI:10.1007/s40304-018-0163-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen X, Wang J. Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric jump processes with infinite range jumps. Front. Math. China. 2015, 10 753-776

[2]

Chen X, Wang J. Intrinsic ultracontractivity of Feynman-Kac semigroups for symmetric jump processes. J. Funct. Anal.. 2016, 270 4152-4195

[3]

Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields. 2008, 140 277-317

[4]

Chen Z-Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann.. 2008, 342 833-883

[5]

Chen Z-Q, Kim P, Kumagai T. Global heat kernel estimates for symmetric jump processes. Trans. Am. Math. Soc.. 2011, 363 5021-5055

[6]

Chung KL, Zhao Z. From Brownian Motion to Schrödinger’s Equation. 1995 New York: Springer

[7]

Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin (2011), 2nd

[8]

Grzywny, T., Kim, K., Kim,P.: Estimates of Dirichlet heat kernel for symmetric Markov processes, arXiv:1512.02717

[9]

Jacob N, Wang F-Y. Higher order eigenvalues for non-local Schrödinger operators. Commun. Pure Appl. Anal.. 2018, 17 191-208

[10]

Kaleta K, Lőrinczi J. Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes. Ann. Probab.. 2015, 43 1350-1398

[11]

Kellermann H, Hieber M. Integrated semigroups. J. Funct. Anal.. 1989, 84 160-180

[12]

Ma ZM, Röckner M. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. 1992 Berlin: Springer

[13]

Metafune G, Spina C. Kernel estimates for a class of Schrödinger semigroups. J. Evol. Equ.. 2007, 7 719-742

[14]

Reed M, Simon B. Methods of Modern Mathematical Physics IV: Analysis of Operators. 1978 New York: Academic Press

[15]

Schilling RL, Uemura T. On the Feller property of Dirichlet forms generated by pseudo differential operators. Tohoku Math. J.. 2007, 59 401-422

[16]

Schilling RL, Uemura T. On the structure of the domain of a symmetric jump-type Dirichlet form. Publ. Res. Inst. Math. Sci.. 2012, 48 1-20

[17]

Sikora A. On-diagonal estimates on Schrödinger semigroup kernels and reduced heat kernels. Commun. Math. Phys.. 1997, 188 233-249

[18]

Wang F-Y. Functional inequalities and spectrum estimates: the infinite measure case. J. Funct. Anal.. 2002, 194 288-310

[19]

Wang F-Y, Wu J. Compactness of Schrödinger semigroups with unbounded below potentials. Bull. Sci. Math.. 2008, 132 679-689

[20]

Wang, J.: Compactness and density estimates for weighted fractional heat semigroups. J. Theor. Probab. (2018). https://doi.org/10.1007/s10959-018-0838-9

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/