Sharp Convergence of Nonlinear Functionals of a Class of Gaussian Random Fields

Weijun Xu

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (4) : 509 -532.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (4) : 509 -532. DOI: 10.1007/s40304-018-0162-9
Article

Sharp Convergence of Nonlinear Functionals of a Class of Gaussian Random Fields

Author information +
History +
PDF

Abstract

We present a self-contained proof of a uniform bound on multi-point correlations of trigonometric functions of a class of Gaussian random fields. It corresponds to a special case of the general situation considered in Hairer and Xu (large-scale limit of interface fluctuation models. ArXiv e-prints arXiv:1802.08192, 2018), but with improved estimates. As a consequence, we establish convergence of a class of Gaussian fields composite with more general functions. These bounds and convergences are useful ingredients to establish weak universalities of several singular stochastic PDEs.

Keywords

Multi-point correlation function / Trigonometric polynomial / Gaussian random fields

Cite this article

Download citation ▾
Weijun Xu. Sharp Convergence of Nonlinear Functionals of a Class of Gaussian Random Fields. Communications in Mathematics and Statistics, 2018, 6(4): 509-532 DOI:10.1007/s40304-018-0162-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bertini L, Giacomin G. Stochastic burgers and KPZ equations from particle systems. Commun. Math. Phys.. 1997, 183 3 571-607

[2]

Furlan, M., Gubinelli, M.: Weak universality for a class of 3D stochastic reaction-diffusion models. ArXiv e-prints (2017). arXiv:1708.03118

[3]

Friz PK, Hairer M. A Course on Rough Paths. Universitext. With an Introduction to Regularity Structures. 2014 Cham: Springer

[4]

Goncalves P, Jara M. Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Rational Mech. Anal.. 2014, 212 2 597-644

[5]

Gubinelli, M., Perkowski, N.: The Hairer–Quastel universality result at stationarity. In: Stochastic analysis on large scale interacting systems, RIMS Kôkyûroku Bessatsu, vol. B59, pp. 101–115. Research Institute for Mathematical Sciences (RIMS), Kyoto (2016)

[6]

Gubinelli M, Perkowski N. KPZ reloaded. Commun. Math. Phys.. 2017, 349 1 165-269

[7]

Gubinelli M, Perkowski N. Energy solutions of KPZ are unique. J. Am. Math. Soc.. 2018, 312 427-471

[8]

Gubinelli M. A panorama of singular SPDEs. Proc. Int. Cong. Math.. 2018, 2 2277-2304

[9]

Hairer M. Solving the KPZ equation. Ann. Math.. 2013, 1782 559-664

[10]

Hairer M. A theory of regularity structures. Invent. Math.. 1982, 2014 269-504

[11]

Hairer M. Renormalisation of parabolic stochastic PDEs. Jpn. J. Math.. 2018, 13 2 187-233

[12]

Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. ArXiv e-prints (2015). arxiv:1512.07845

[13]

Hairer, M., Xu, W.: Large-scale limit of interface fluctuation models. Ann Probab. ArXiv e-prints (2018). arXiv:1802.08192

[14]

Kardar M, Parisi G, Zhang Y-C. Dynamical scaling of growing interfaces. Phys. Rev. Lett.. 1986, 56 889-892

[15]

Lodhia A, Sheffield S, Sun X, Watson S. Fractional Gaussian fields: a survey. Probab. Surv.. 2016, 13 1-56

[16]

Nualart D. The Malliavin Calculus and Related Topics. Probability and its Applications (New York). 2006 2 Berlin: Springer

[17]

Shen H, Xu W. Weak universality of dynamical $\phi ^4_3$: non-Gaussian noise. Stoch. Partial Differ. Equ. Anal. Comput.. 2018, 62 211-254

Funding

Engineering and Physical Sciences Research Council(EP/N021568/1)

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/