Inverse Problems in Graph Theory: Nets

A. A. Makhnev , M. P. Golubyatnikov , Wenbin Guo

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 69 -83.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 69 -83. DOI: 10.1007/s40304-018-0159-4
Article

Inverse Problems in Graph Theory: Nets

Author information +
History +
PDF

Abstract

Let $\varGamma $ be a distance-regular graph of diameter 3 with strong regular graph $\varGamma _3$. The determination of the parameters $\varGamma _3$ over the intersection array of the graph $\varGamma $ is a direct problem. Finding an intersection array of the graph $\varGamma $ with respect to the parameters $\varGamma _3$ is an inverse problem. Previously, inverse problems were solved for $\varGamma _3$ by Makhnev and Nirova. In this paper, we study the intersection arrays of distance-regular graph $\varGamma $ of diameter 3, for which the graph ${\bar{\varGamma }}_3$ is a pseudo-geometric graph of the net $PG_{m}(n, m)$. New infinite series of admissible intersection arrays for these graphs are found. We also investigate the automorphisms of distance-regular graph with the intersection array $\{20,16,5; 1,1,16 \}$.

Keywords

Distance-regular graph / Pseudo-geometric graph / Strong regular graph

Cite this article

Download citation ▾
A. A. Makhnev, M. P. Golubyatnikov, Wenbin Guo. Inverse Problems in Graph Theory: Nets. Communications in Mathematics and Statistics, 2019, 7(1): 69-83 DOI:10.1007/s40304-018-0159-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jurii, A., Vidali, J.: The Sylvester graph and Moore graphs. Eur. J. Comb. (2018)

[2]

Brouwer AE, Cohen AM, Neumaier A. Distance-Regular Graphs. 1989 Berlin: Springer

[3]

Makhnev A, Nirova M. On distance-regular Shilla graphs. Matem. Notes. 2018, 103 4 558-571

[4]

Koolen JH, Park J. Shilla distance-regular graphs. Eur. J. Comb.. 2010, 31 2064-2073

[5]

Gavrilyuk A, Makhnev A. On automorphisms of distance-regular graphs with intersection array, $\{56,45,1;1,9,56\}$. Doklady Mathematics. 2010, 3 439-442

[6]

Zavarnitsine AV. Finite simple groups with narrow prime spectrum. Siberian Electron. Math. Rep.. 2009, 6 1-12

[7]

Bose KS, Dowling AA. A generalization of Moore graphs of diameter 2. J. Comb. Theory Ser. B. 1971, 11 213-226

Funding

National Natural Science Foundation of China(11771409)

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/