$G^1$ continuity,Curvature continuity" /> $G^1$ continuity" /> $G^1$ continuity,Curvature continuity" />

A New Method to Design Cubic Pythagorean-Hodograph Spline Curves with Control Polygon

Hongmei Kang , Xin Li

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (3) : 363 -381.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (3) : 363 -381. DOI: 10.1007/s40304-018-0158-5
Article

A New Method to Design Cubic Pythagorean-Hodograph Spline Curves with Control Polygon

Author information +
History +
PDF

Abstract

A new method to design a cubic Pythagorean-hodograph (PH) spline curve from any given control polygon is proposed. The key idea is to suitably choose a set of auxiliary points associated with the edges of the given control polygon to guarantee the constructed PH spline has $G^1$ continuity or curvature continuity. The method facilitates intuitive and efficient construction of open and closed cubic PH spline curves that typically agrees closely with the same friendly interface and properties as B-splines, for example, the convex hull and variation-diminishing properties.

Keywords

Cubic pythagorean-hodograph (PH) curve / Control polygon / Interactive design / $G^1$ continuity')">$G^1$ continuity / Curvature continuity

Cite this article

Download citation ▾
Hongmei Kang, Xin Li. A New Method to Design Cubic Pythagorean-Hodograph Spline Curves with Control Polygon. Communications in Mathematics and Statistics, 2019, 7(3): 363-381 DOI:10.1007/s40304-018-0158-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecht G, Beccari CV, Canonne J-C, Romani L. Planar Pythagorean-hodograph B-spline curves. Comput. Aided Geom. Des.. 2017, 57 57-77

[2]

Albrecht G, Farouki RT. Construction of $C^2$ Pythagorean hodograph interpolating splines by the homotopy method. Adv. Comp. Math.. 1996, 5 417-442

[3]

Choi HI, Farouki RT, Kwon S-H, Moon HP. Topological criterion for selection of quintic Pythagorean-hodograph hermite interpolants. Comput. Aided Geom. Des.. 2008, 25 411-433

[4]

Choi HI, Han CY, Moon HP, Roh KH, Wee N-S. Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves. Comput. Aided Des.. 1999, 31 59-72

[5]

Dong, B., Farouki, R.T.: PHquintic: a library of basic functions for the construction and analysis of planar quintic Pythagorean-hodograph curves. ACM Trans. Math. Softw. (TOMS) (2015). https://doi.org/10.1145/2699467

[6]

Farouki R. Barnhill RE. Pythagorean hodograph curves in practical use. Geometry Processing for Design and Manufacturing. 1992 Philadelphia: SIAM. 3-33

[7]

Farouki R. Farin G, Hoschek J, Kim M-S. Pythagorean-hodograph curves. Handbook of Computer Aided Geometric Design. 2002 Amsterdam: Elsevier. 405-427

[8]

Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)

[9]

Farouki R, Manjunathaiah J, Nichlas D, Yuan G, Jee S. Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves. Comput. Aided Des.. 1998, 30 631-640

[10]

Farouki, R., Manni, C., Pelosi, F., Sampoli, M.: Design of $C^2$ spatial Pythagorean-hodograph quintic spline curves by control polygons. In: Lecture Notes in Computer Science, vol. 6920, pp. 253–269 (2012)

[11]

Farouki R, Neff C. Hermite interpolation by Pythagorean hodograph quintics. Math. Comput.. 1995, 64 1589-1609

[12]

Farouki R, Sakkalis T. Pythagorean hodographs. IBM J. Res. Dev.. 1990, 34 736-752

[13]

Farouki R, Sakkalis T. Pythagorean-hodograph space curves. Adv. Comput. Math.. 1994, 2 41-66

[14]

Farouki R, Shah S. Real-time CNC interpolators for Pythagorean-hodograph curves. Comput. Aided Geom. Des.. 1996, 13 583-600

[15]

Farouki RT. Exact rotation-minimizing frames for spatial Pythagorean hodograph curves. Gr. Models. 2002, 64 382-395

[16]

Farouki RT, Giannelli C, Sestini A. Local modification of Pythagorean-hodograph quintic spline curves using the B-spline form. Adv. Comput. Math.. 2016, 42 199-225

[17]

Farouki RT, Manni C, Sestini A. Shape-preserving interpolation by $G^1$ and $G^2$ PH quintic splines. IMA J. Numer. Anal.. 2003, 23 175-195

[18]

Farouki RT, Tsai Y-F, Yuan G-F. Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Comput. Aided Geom. Des.. 1999, 16 61-76

[19]

Jaklič G, Kozak J, Krajnc M, Vitrih V, Žagar E. On interpolation by planar cubic $G^2$ Pythagorean-hodograph spline curves. Math. Comput.. 2010, 79 305-326

[20]

Jüttler B. Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comput.. 2000, 70 1089-1111

[21]

Jüttler B, Mäurer C. Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling. Comput. Aided Des.. 1999, 31 73-83

[22]

Mäurer C, Jüttler B. Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics. J. Geom. Gr.. 1999, 3 141-159

[23]

Meek D, Walton D. Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math.. 1997, 81 299-309

[24]

Moon H, Farouki RT, Choi H. Construction and shape analysis of PH quintic hermite interpolants. Comput. Aided Geom. Des.. 2001, 18 93-115

[25]

Pelosi F, Farouki RT, Manni C, Sestini A. Geometric hermite interpolation by spatial Pythagorean hodograph cubics. Adv. Comput. Math.. 2005, 22 325-352

[26]

Pelosi F, Sampoli M, Farouki R, Manni C. A control polygon scheme for design of planar $C^2$ PH quintic spline curves. Comput. Aided Geom. Des.. 2007, 24 28-52

[27]

Tsai Y-F, Farouki RT, Feldman B. Performance analysis of CNC interpolators for time-dependent feedrates along PH curves. Comput. Aided Geom. Des.. 2001, 18 245-265

[28]

Wang G, Fang L. On control polygons of quartic Pythagorean-hodograph curves. Comput. Aided Geom. Des.. 2009, 26 1006-1015

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/