The Oort Conjecture for Shimura Curves of Small Unitary Rank

Ke Chen , Xin Lu , Kang Zuo

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 249 -268.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 249 -268. DOI: 10.1007/s40304-018-0155-8
Article

The Oort Conjecture for Shimura Curves of Small Unitary Rank

Author information +
History +
PDF

Abstract

We prove that a Shimura curve in the Siegel modular variety is not generically contained in the open Torelli locus as long as the rank of unitary part in its canonical Higgs bundle satisfies a numerical upper bound. As an application we show that the Coleman–Oort conjecture holds for Shimura curves associated with partial corestriction upon a suitable choice of parameters, which generalizes a construction due to Mumford.

Keywords

Coleman-Oort conjecture / Torelli locus / Shimura curves / Higgs bundles / Corestriction

Cite this article

Download citation ▾
Ke Chen, Xin Lu, Kang Zuo. The Oort Conjecture for Shimura Curves of Small Unitary Rank. Communications in Mathematics and Statistics, 2018, 6(3): 249-268 DOI:10.1007/s40304-018-0155-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 267. Springer, New York (1985)

[2]

Carayol H. Sur la mauvaise réduction des courbes de Shimura. Compos. Math.. 1980, 59 2 151-230

[3]

Chen K, Lu X, Zuo K. On the Oort conjecture for Shimura varieties of unitary and orthogonal types. Compos. Math.. 2016, 152 889-917

[4]

Chen K, Lu X, Tan S, Zuo K. On Higgs bundles over Shimura varieties of ball quotient type. Asian J. Math.. 2018, 22 2 269-284

[5]

Deligne P. Variétés de Shimura: Interprétation Modulaire et Techinques de Construction de Modèles Canoniques, Automorphic forms, Representations and L-Functions, Part 2. 1979 Providence: AMS. 247-289

[6]

Fujita T. On Kähler fiber spaces over curves. J. Math. Soc. Jpn.. 1978, 30 4 779-794

[7]

González-Alonso, V., Stoppino, L., Torelli, S.: On the rank of the flat unitary factor of the hodge bundle (2017). arxiv:1709.05670

[8]

Hartshorne, R.: Algebraic Geometry. Springer, New York (1977) (Graduate Texts in Mathematics, No. 52)

[9]

Hida H. $p$-Adic Automorphic Forms on Shimura Varieties. 2007 Berlin: Springer

[10]

Liu X. Modular invariants and singularity indices of hyperelliptic fibrations. Chin. Ann. Math. Ser. B. 2016, 37 6 875-890

[11]

Jun L, Tan S-L, Fei Y, Zuo K. A new inequality on the Hodge number $h^{1,1}$ of algebraic surfaces. Math. Z.. 2014, 276 1–2 543-555

[12]

Lu X, Zuo K. The Oort conjecture on Shimura curves in the Torelli locus of hyperelliptic curves. J. Math. Pures Appl.. 2017, 108 4 532-552

[13]

Xin L, Zuo K. On the gonality and the slope of a fibred surface. Adv. Math.. 2018, 324 336-354

[14]

Lu, X., Zuo, K.: On the slope conjecture of Barja and Stoppino for fibred surfaces. Ann. Scuola Norm. Super. Pisa. (2017). https://doi.org/10.2422/2036-2145.201611_008

[15]

Mumford D. A note on Shimura’s paper “Discontinuous groups and Abelian varieties”. Math. Ann.. 1969, 181 345-351

[16]

Platonov V, Rapinchuk A. Algebraic Groups and Number Theory. 1994 Cambridge: Academic Press

[17]

Tsimerman J. On the Andre-Oort conjecture for ${\cal{A}}_g$. Ann. Math.. 2018, 187 2 379-390

[18]

Viehweg E, Zuo K. A characterization of certain Shimura curves in the moduli stack of abelian varieties. J. Differ. Geom.. 2004, 66 2 233-287

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/