$\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" /> $\pi $$-subgroup" /> $\mathfrak X$$-subgroup" /> $\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" />

Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups

Wenbin Guo , Danila O. Revin

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 289 -317.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 289 -317. DOI: 10.1007/s40304-018-0154-9
Article

Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups

Author information +
History +
PDF

Abstract

According to Hall, a subgroup H of a group G is said to be pronormal if H and $H^g$$ are conjugate in $\langle H,H^g\rangle $$ for every $g\in G$$. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal $\mathfrak X$$-subgroup, etc.

Keywords

Pronormal subgroup / $\pi $$-subgroup')">Hall $\pi $$-subgroup / $\mathfrak X$$-subgroup')">Submaximal $\mathfrak X$$-subgroup / Subgroup of odd index

Cite this article

Download citation ▾
Wenbin Guo,Danila O. Revin. Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups. Communications in Mathematics and Statistics, 2018, 6(3): 289-317 DOI:10.1007/s40304-018-0154-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China(11771409)

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/