$\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" /> $\pi $$-subgroup" /> $\mathfrak X$$-subgroup" /> $\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" />
Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups
Wenbin Guo , Danila O. Revin
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 289 -317.
Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups
According to Hall, a subgroup H of a group G is said to be pronormal if H and $H^g$$ are conjugate in $\langle H,H^g\rangle $$ for every $g\in G$$. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal $\mathfrak X$$-subgroup, etc.
Pronormal subgroup / $\pi $$-subgroup')">Hall $\pi $$-subgroup / $\mathfrak X$$-subgroup')">Submaximal $\mathfrak X$$-subgroup / Subgroup of odd index
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Chunikhin, S. A.: Über auflösbare Gruppen, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk, 2 222–223 (1938) |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Guo, W., Buturlakin, A.A., Revin, D.O.: Equivalency of the existence of non-conjugate and non-isomorphic Hall $\pi $$-subgroups. Proc. Steklov Inst., accepted |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Guo, W., Revin, D.O.: On a relation between the conjugateness for the maximal and submaximal ${\mathfrak{X}}$$-subgroups. Algebra Logic, accepted |
| [18] |
|
| [19] |
Guo, W., Revin, D.O., Vdovin, E.P.: Finite groups in which the ${\mathfrak{X}}$$-maximal subgroups are conjugate, in preparation |
| [20] |
|
| [21] |
Hartley, B.: Helmut Wielandt on the $\pi $$-structure of finite groups, Helmut Wielandt: Mathematical Works, Vol. 1, Group theory (ed. B. Huppert and H. Schneider, de Gruyter, Berlin, 1994), 511–516 (1994) |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
Hall, P.: Phillip Hall lecture notes on group theory—Part 6. University of Cambridge, 1951–1967. http://omeka.wustl.edu/omeka/items/show/10788 |
| [26] |
|
| [27] |
Kondrat’ev, A. S., Maslova, N. V., Revin, D. O.: On the pronormality of subgroups of odd index in finite simple groups, Groups St Andrews 2017. London Mathematical Society Lecture Note Series (to appear). arXiv:1807.00384 |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Kondrat’ev, A.S., Maslova, N.V., Revin, D.O.: On pronormal subgroups in finite simple groups. Doklady Math., 98(2), 1–4 (2018). https://doi.org/10.1134S1064562418060029 |
| [32] |
Kondrat’ev, A.S., Maslova, N.V., Revin, D.O.: On the pronormality of subgroups of odd indices in the simple exceptional groups of Lie type, in preparation |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Mazurov, V.D., Khukhro, E.I. (eds.): The Kourovka Notebook. Unsolved Problems in Group Theory, 18th edn. Russian Academy of Sciences Siberian Division Institute of Mathematics, Novosibirsk (2014) |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
Skresanov, S.V.: The Wielandt–Hartley theorem for subnormal subgroups, in preparation |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Vdovin, E.P., Manzaeva, N.Ch., Revin, D.O.: The Hall property ${\mathscr {D}}_{\pi }$$ is inherited by overgroups of $\pi $$-Hall subgroups, to appear |
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
Wielandt, H.: Entwicklungslinien in der Strukturtheorie der endlichen Gruppen. In: Proc. Intern. Congress Math., Edinburg, 1958. London: Cambridge Univ. Press, pp. 268–278. (1960) |
| [69] |
Wielandt, H.: Sur la Stucture des groupes composés, Séminare Dubriel-Pisot(Algèbre et Théorie des Nombres), 17e anée, 10 pp. 1963/64. N17 |
| [70] |
Wielandt, H.: Zusammenghesetzte Gruppen: Hölder Programm heute, The Santa Cruz conf. on finite groups, Santa Cruz, 1979. Proc. Sympos. Pure Math., 37, Providence RI: Amer. Math. Soc., pp. 161–173. (1980) |
| [71] |
Wielandt, H.: Zusammenghesetzte Gruppen endlicher Ordnung, Vorlesung an der Universität Tübingen im Wintersemester 1963/64. Helmut Wielandt: Mathematical Works, vol. 1, Group Theory (ed. B. Huppert and H. Schneider, de Gruyter, Berlin, 1994), pp. 607–516 (1994) |
| [72] |
|
/
| 〈 |
|
〉 |