$\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" /> $\pi $$-subgroup" /> $\mathfrak X$$-subgroup" /> $\pi $$-subgroup,Submaximal $\mathfrak X$$-subgroup,Subgroup of odd index" />

Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups

Wenbin Guo , Danila O. Revin

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 289 -317.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 289 -317. DOI: 10.1007/s40304-018-0154-9
Article

Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups

Author information +
History +
PDF

Abstract

According to Hall, a subgroup H of a group G is said to be pronormal if H and $H^g$$ are conjugate in $\langle H,H^g\rangle $$ for every $g\in G$$. In this survey, we discuss the role of pronormality for some subgroups of finite groups: Hall subgroups, subgroups of odd index, submaximal $\mathfrak X$$-subgroup, etc.

Keywords

Pronormal subgroup / $\pi $$-subgroup')">Hall $\pi $$-subgroup / $\mathfrak X$$-subgroup')">Submaximal $\mathfrak X$$-subgroup / Subgroup of odd index

Cite this article

Download citation ▾
Wenbin Guo, Danila O. Revin. Pronormality and Submaximal $\mathfrak {X}$$-Subgroups on Finite Groups. Communications in Mathematics and Statistics, 2018, 6(3): 289-317 DOI:10.1007/s40304-018-0154-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arad Z, Ward MB. New criteria for the solvability of finite groups. J. Algebra. 1982, 77 1 234-246

[2]

Aschbacher M. 3-Transposition Groups. Cambridge Tracts in Mathematics. 1997 Cambridge: Cambridge University Press

[3]

Aschbacher M, Hall M, Hall M Jr. Groups generated by a class of elements of order 3. J. Algebra. 1973, 24 591-612

[4]

Babai L. Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hungar.. 1977, 29 329-336

[5]

Buturlakin AA, Revin DO. On $p$$-complements of finite groups. Siberian Electron. Math. Rep.. 2013, 10 414-417

[6]

Cooper CDH. Maximal $\pi $$-subgroups of the symmetric groups. Math. Z.. 1971, 124 N4 285-289

[7]

Chunikhin, S. A.: Über auflösbare Gruppen, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk, 2 222–223 (1938)

[8]

Doerk K, Hawks T. Finite Soluble Groups. 1992 Berlin: Walter de Gruyter

[9]

Gross F. Conjugacy of odd order Hall subgroups. Bull. Lond. Math. Soc.. 1987, 19 4 311-319

[10]

Guo W. The Theory of Classes of Groups. 2006 Beijing: Kluwer Acad. Publ

[11]

Guo W. Structure Theory of Canonical Classes of Finite Groups. 2015 Berlin: Springer

[12]

Guo, W., Buturlakin, A.A., Revin, D.O.: Equivalency of the existence of non-conjugate and non-isomorphic Hall $\pi $$-subgroups. Proc. Steklov Inst., accepted

[13]

Guo W, Maslova NV, Revin DO. On the pronormality of subgroups of odd index in some extensions of finite groups. Siberian Math. J.. 2018, 59 4 610-622

[14]

Guo W, Revin DO. On the class of groups with pronormal Hall $\pi $$-subgroups. Siberian Math. J.. 2014, 55 3 415-427

[15]

Guo W, Revin DO. Classification and properties of the $\pi $$-submaximal subgroups in minimal nonsolvable groups. Bull. Math. Sci.. 2018, 8 2 325-351

[16]

Guo W, Revin DO. On maximal and submaximal ${\mathfrak{X}}$$-subgroups. Algebra Logic. 2018, 57 1 9-28

[17]

Guo, W., Revin, D.O.: On a relation between the conjugateness for the maximal and submaximal ${\mathfrak{X}}$$-subgroups. Algebra Logic, accepted

[18]

Guo W, Revin DO, Vdovin EP. Confirmation for Wielandt’s conjecture. J. Algebra. 2015, 434 193-206

[19]

Guo, W., Revin, D.O., Vdovin, E.P.: Finite groups in which the ${\mathfrak{X}}$$-maximal subgroups are conjugate, in preparation

[20]

Hartley B. A theorem of Sylow type for a finite groups. Math. Z.. 1971, 122 4 223-226

[21]

Hartley, B.: Helmut Wielandt on the $\pi $$-structure of finite groups, Helmut Wielandt: Mathematical Works, Vol. 1, Group theory (ed. B. Huppert and H. Schneider, de Gruyter, Berlin, 1994), 511–516 (1994)

[22]

Hall P. A note on soluble groups. J. Lond. Math. Soc.. 1928, 3 98-105

[23]

Hall P. A characteristic property of soluble groups. J. Lond. Math. Soc.. 1937, 12 198-200

[24]

Hall P. Theorems like Sylow‘s. Proc. Lond. Math. Soc.. 1956, 6 22 286-304

[25]

Hall, P.: Phillip Hall lecture notes on group theory—Part 6. University of Cambridge, 1951–1967. http://omeka.wustl.edu/omeka/items/show/10788

[26]

Kantor WM. Primitive permutation groups of odd degree, and an application to finite projective planes. J. Algebra.. 1987, 106 1 15-45

[27]

Kondrat’ev, A. S., Maslova, N. V., Revin, D. O.: On the pronormality of subgroups of odd index in finite simple groups, Groups St Andrews 2017. London Mathematical Society Lecture Note Series (to appear). arXiv:1807.00384

[28]

Kondrat’ev AS, Maslova NV, Revin DO. On the pronormality of subgroups of odd index in finite simple groups. Siberian Math. J.. 2015, 56 6 1001-1007

[29]

Kondrat’ev AS, Maslova NV, Revin DO. A pronormality criterion for supplements to Abelian normal subgroups. Proc. Steklov Inst. Math.. 2017, 296 Suppl. 1 1145-1150

[30]

Kondrat’ev AS, Maslova NV, Revin DO. On the pronormality of subgroups of odd index in finite simple symplectic groups. Siberian Math. J.. 2017, 58 3 467-475

[31]

Kondrat’ev, A.S., Maslova, N.V., Revin, D.O.: On pronormal subgroups in finite simple groups. Doklady Math., 98(2), 1–4 (2018). https://doi.org/10.1134S1064562418060029

[32]

Kondrat’ev, A.S., Maslova, N.V., Revin, D.O.: On the pronormality of subgroups of odd indices in the simple exceptional groups of Lie type, in preparation

[33]

Kondratiev AS. Normalizers of the Sylow 2-subgroups in finite simple groups. Math. Notes. 2005, 78 3 338-346

[34]

Liebeck MW, Saxl J. The primitive permutation groups of odd degree. J. Lond. Math. Soc. II. Ser.. 1985, 31 2 250-264

[35]

Manzaeva NCh. Heritability of the property ${\mathscr {D}}_{\pi }$$ by overgroups of $\pi $$-Hall subgroups in the case where $2\in \pi $$. Algebra Logic. 2014, 53 1 17-28

[36]

Maslova NV. Classification of maximal subgroups of odd index in finite simple classical groups. Proc. Steklov Inst. Math.. 2009, 267 Suppl. 1 164-183

[37]

Maslova NV. Classification of maximal subgroups of odd index in finite simple classical groups: addendum. Siberian Electron. Math. Rep.. 2018, 15 707-718

[38]

Maslova NV. Classification of maximal subgroups of odd index in finite groups with alternating socle. Proc. Steklov Inst. Math.. 2014, 285 Suppl. 1 136-138

[39]

Mazurov, V.D., Khukhro, E.I. (eds.): The Kourovka Notebook. Unsolved Problems in Group Theory, 18th edn. Russian Academy of Sciences Siberian Division Institute of Mathematics, Novosibirsk (2014)

[40]

Nesterov MN. Pronormality of Hall subgroups in almost simple groups. Siberian Electron. Math. Rep.. 2015, 12 1032-1038

[41]

Nesterov MN. On pronormality and strong pronormality of Hall subgroups. Siberian Math. J.. 2017, 58 1 128-133

[42]

Nesterov MN. Arithmetic of conjugacy of $p$$-complements. Algebra Logic. 2015, 54 1 36-47

[43]

Pálfy P. Isomorphism problem for relational structures with a cyclic automorphism. Acta Mathematica Academiae Seientiarum Hungaricae. 1979, 34 3–4 287-292

[44]

Pálfy P. Isomorphism problem for relational structures with a cyclic automorphism. Eur. J. Comb.. 1987, 8 35-43

[45]

Revin DO. The $D_\pi $$-property in finite simple groups. Algebra Logic. 2008, 47 3 210-227

[46]

Revin DO. The $D_\pi $$-property in a class of finite groups. Algebra Logic. 2002, 41 3 187-206

[47]

Revin DO, Vdovin EP. Hall subgroups of finite groups. Contemp. Math.. 2006, 402 229-265

[48]

Revin DO, Vdovin EP. On the number of classes of conjugate Hall subgroups in finite simple groups. J. Algebra. 2010, 324 12 3614-3652

[49]

Revin DO, Vdovin EP. An existence criterion for Hall subgroups of finite groups. J. Group Theory. 2011, 14 1 93-101

[50]

Revin DO, Vdovin EP. Frattini argument for Hall subgroups. J. Algebra. 2014, 414 95-104

[51]

Shemetkov LA. Generalizations of Sylow’s theorem. Siberian Math. J.. 2003, 44 6 1127-1132

[52]

Skresanov, S.V.: The Wielandt–Hartley theorem for subnormal subgroups, in preparation

[53]

Suzuki M. Group Theory II. 1986 New York: Springer

[54]

Thompson JG. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc.. 1968, 74 383-437

[55]

Tyshkevich RI. Pronormal regular subgroups of the finite symmetric group. J. Sov. Math.. 1984, 24 4 470-475

[56]

Tyshkevich RI. Relations admitting a transitive group of automorphisms. Math. USSR-Sbornik. 1975, 26 2 245-259

[57]

Vdovin EP. Carter subgroups of finite almost simple groups. Algebra Logic. 2007, 46 2 90-119

[58]

Vdovin EP, Manzaeva NCh, Revin DO. On the heritability of the property ${\mathscr {D}}_{\pi }$$ by subgroups. Proc. Steklov Inst. Math.. 2012, 279 1 130-138

[59]

Vdovin, E.P., Manzaeva, N.Ch., Revin, D.O.: The Hall property ${\mathscr {D}}_{\pi }$$ is inherited by overgroups of $\pi $$-Hall subgroups, to appear

[60]

Vdovin EP, Nesterov MN, Revin DO. On the pronormality of Hall subgroups in its normal closure. Algebra Logic. 2017, 55 6 451-457

[61]

Vdovin EP, Revin DO. A conjugacy criterion for Hall subgroups in finite groups. Siberian Math. J.. 2010, 51 3 402-409

[62]

Vdovin EP, Revin DO. Theorems of Sylow type. Russ. Math. Surv.. 2011, 66 5 829-870

[63]

Vdovin EP, Revin DO. Abnormality criteria for $p$$-complements. Algebra Logic. 2016, 55 5 347-353

[64]

Vdovin EP, Revin DO. Pronormality of Hall subgroups in finite simple groups. Siberian Math. J.. 2012, 53 3 419-430

[65]

Vdovin EP, Revin DO. On the pronormality of Hall subgroups. Siberian Math. J.. 2013, 54 1 22-28

[66]

Vdovin EP, Revin DO. The existence of pronormal $\pi $$-Hall subgroups in $E_\pi $$-groups. Siberian Math. J.. 2015, 56 3 379-383

[67]

Wielandt H. Zum Satz von Sylow. II. Math. Z.. 1959, 71 4 461-462

[68]

Wielandt, H.: Entwicklungslinien in der Strukturtheorie der endlichen Gruppen. In: Proc. Intern. Congress Math., Edinburg, 1958. London: Cambridge Univ. Press, pp. 268–278. (1960)

[69]

Wielandt, H.: Sur la Stucture des groupes composés, Séminare Dubriel-Pisot(Algèbre et Théorie des Nombres), 17e anée, 10 pp. 1963/64. N17

[70]

Wielandt, H.: Zusammenghesetzte Gruppen: Hölder Programm heute, The Santa Cruz conf. on finite groups, Santa Cruz, 1979. Proc. Sympos. Pure Math., 37, Providence RI: Amer. Math. Soc., pp. 161–173. (1980)

[71]

Wielandt, H.: Zusammenghesetzte Gruppen endlicher Ordnung, Vorlesung an der Universität Tübingen im Wintersemester 1963/64. Helmut Wielandt: Mathematical Works, vol. 1, Group Theory (ed. B. Huppert and H. Schneider, de Gruyter, Berlin, 1994), pp. 607–516 (1994)

[72]

Zenkov VI, Monakhov VS, Revin DO. An analog for the Frattini factorization of finite groups. Algebra Logic. 2004, 43 2 102-108

Funding

National Natural Science Foundation of China(11771409)

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/