Phase Transition of Kähler–Einstein Metrics via Moment Maps

Jun Wang , Jian Zhou

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 389 -415.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 389 -415. DOI: 10.1007/s40304-018-0153-x
Article

Phase Transition of Kähler–Einstein Metrics via Moment Maps

Author information +
History +
PDF

Abstract

We study the phase transition of Kähler Ricci-flat metrics on some open Calabi–Yau spaces with the help of the images of moment maps of natural torus actions on these spaces.

Keywords

Moment Map / Phase Transition / Kähler–Einstein Space

Cite this article

Download citation ▾
Jun Wang, Jian Zhou. Phase Transition of Kähler–Einstein Metrics via Moment Maps. Communications in Mathematics and Statistics, 2018, 6(3): 389-415 DOI:10.1007/s40304-018-0153-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abreu M. Kähler geometry of toric varieties and extremal metrics. Int. J. Math.. 1998, 9 641-651

[2]

Atiyah M. Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc.. 1982, 14 1-15

[3]

Calabi E. Yau ST. Extremal Kähler metrics. Seminars on Differential Geometry. 1982 Princeton and Tokyo: Princeton University Press and University of Tokyo Press. 259-290

[4]

Calabi E. Chavel I, Farkas HM. Extremal Kähler metrics II. Differential Geometry and Complex Analysis. 1985 Berlin: Springer. 95-114

[5]

Candelas P, de La Ossa XC. Comments on conifold. Nucl. Phys.. 1990, 342 246-248

[6]

Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994) (1996)

[7]

Cheeger J. Degeneration of Einstein metrics and metrics with special holonomy. Surv. Differ. Geom.. 2003, 8 1 29-73

[8]

Delzant T. Hamiltoniens periodiques et images convexes de l’application moment. Bull. Soc. Math. France. 1988, 116 3 315-339

[9]

Donaldson SK. Scalar curvature and stability of toric varieties. J. Differ. Geom.. 2002, 62 289-349

[10]

Duan X, Zhou J. Rotationally symmetric pseudo-Kähler–Einstein metrics. Front. Math. China. 2011, 6 3 391-410

[11]

Duan X, Zhou J. Rotationally symmetric pseudo-Kähler metrics of constant scalar curvatures. Sci. China Math.. 2011, 54 5 925-938

[12]

Falcao de Moraes S, Tomei C. Moment maps on symplectic cones. Pac. J. Math.. 1997, 181 2 357-375

[13]

Guillemin V. Kähler structures on toric varieties. J. Differ. Geom.. 1994, 40 285-309

[14]

Guillemin V, Sternberg S. Convexity properties of the moment mapping. Invent. Math.. 1982, 67 491-513

[15]

Koiso N. Ochiai T. On rotationally symmetric Hamilton’s equation for Kähler–Einstein metrics. Recent Topics in Differential and Analytic Geometry. 1990 Tokyo: Mathematical Society of Japan. 327-337

[16]

LeBrun C. Counter-examples to the generalized positive action conjecture. Commun. Math. Phys.. 1988, 118 591-596

[17]

Lerman E. Contact toric manifolds. J. Symplectic Geom.. 2003, 1 No.4 785-828

[18]

Martelli D, Sparks J, Yau S-T. The geometric dual of a-maximisation for toric Sasaki–Einstein manifolds. Commun. Math. Phys.. 2006, 268 39-65

[19]

Pedersen H, Poon YS. Hamiltonian construction of Kähler–Einstein metrics and Kähler metrics of constant scalar curvature. Commun. Math. Phys.. 1991, 136 309-326

[20]

Prato E. Convexity properties of the moment map for certain non-compact manifolds. Commun. Anal. Geom.. 1994, 2 2 267-278

[21]

Shima H. The Geometry of Hessian Structures. 2007 Singapore: World Scientific

[22]

Simanca SR. Kähler metrics of constant scalar curvature on bundles over $CP^{n-1}$$. Math. Ann.. 1991, 291 239-246

[23]

Simanca SR. A note on extremal metrics of non-constant scalar curvature. Isr. J. Math.. 1992, 78 85-93

[24]

Wang, J.: Phase transition of Kähler metrics via moment maps. Ph.D. Thesis, Tsinghua University (2018)

[25]

Zhou, J.: On geometry and symmetry of Kepler systems I. arXiv:1708.05504v1 (2017)

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/