$\tau $$-semi-stable,Approximate $\tau $$-Hermitian–Einstein structure,Holomorphic pair,Gauduchon manifolds" /> $\tau $$-semi-stable" /> $\tau $$-Hermitian–Einstein structure" /> $\tau $$-semi-stable,Approximate $\tau $$-Hermitian–Einstein structure,Holomorphic pair,Gauduchon manifolds" />

Semi-stability for Holomorphic Pairs on Compact Gauduchon Manifolds

Ruixin Wang , Chuanjing Zhang

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (2) : 191 -206.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (2) : 191 -206. DOI: 10.1007/s40304-018-0152-y
Article

Semi-stability for Holomorphic Pairs on Compact Gauduchon Manifolds

Author information +
History +
PDF

Abstract

In this paper, we establish a generalized Hitchin–Kobayashi correspondence between the $\tau $$-semi-stability and the existence of approximate $\tau $$-Hermitian–Einstein structure on holomorphic pair $(E,\phi )$$ over the compact Gauduchon manifold.

Keywords

$\tau $$-semi-stable')">$\tau $$-semi-stable / $\tau $$-Hermitian–Einstein structure')">Approximate $\tau $$-Hermitian–Einstein structure / Holomorphic pair / Gauduchon manifolds

Cite this article

Download citation ▾
Ruixin Wang, Chuanjing Zhang. Semi-stability for Holomorphic Pairs on Compact Gauduchon Manifolds. Communications in Mathematics and Statistics, 2019, 7(2): 191-206 DOI:10.1007/s40304-018-0152-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez-Cónsul L, García-Prada O. Dimensional reduction, $SL(2, \mathbb{C})$$-equivariant bundles and stable holomorphic chains. Int. J. Math.. 2001, 12 2 159-201

[2]

Bando,S., Siu,Y.T.: Stable sheaves and Einstein-Hermitian metrics. In: Geometry and Analysis on Complex Manifolds, World Scientific, pp. 39–50. (1994)

[3]

Biquard O. On parabolic bundles over a complex surface. J. Lond. Math. Soc.. 1996, 53 302-316

[4]

Bradlow SB. Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys.. 1990, 135 1-17

[5]

Bradlow SB. Special metrics and stability for holomorphic bundles with global sections. J. Differ. Geom.. 1991, 33 169-213

[6]

Bradlow SB, García-Prada O. Stable triples, equivariant bundles and dimensional reduction. Math. Ann.. 1996, 304 2 225-252

[7]

Buchdahl NP. Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann.. 1988, 280 4 625-648

[8]

Biswas I, Bradlow SB, Jacob A, Stemmler M. Automorphisms and connections on Higgs bundles over compact Kähler manifolds. Differ. Geom. Appl.. 2014, 32 139-152

[9]

Biswas I, Bradlow SB, Jacob A, Stemmler M. Approximate Hermitian-Einstein connections on principal bundles over a compact Riemann surface. Ann. Global Anal. Geom.. 2013, 44 257-268

[10]

Donaldson SK. A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom.. 1983, 18 2 269-277

[11]

Donaldson SK. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc.. 1985, 50 1-26

[12]

Donaldson SK. Infinite determinants, stable bundles, and curvature. Duke Math. J.. 1987, 54 231-247

[13]

García-Prada O. Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math.. 1994, 5 1 1-52

[14]

Gauduchon P. La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann.. 1984, 267 4 495-518

[15]

Hitchin NJ. The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc.. 1987, 55 59-126

[16]

Hong MC. Heat flow for the Yang-Mills-Higgs field and the Hermitian Yang-Mills-Higgs metric. Ann. Global Anal. Geom.. 2001, 20 23-46

[17]

Hong MC, Tian G. Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections. Math. Ann.. 2004, 330 441-472

[18]

Jacob A. Existence of approximate Hermitian-Einstein structures on semistable bundles. Asian J. Math.. 2014, 18 859-884

[19]

Jost J, Yang YH, Zuo K. Cohomologies of unipotent harmonic bundles over noncompact curves. J. Reine Angew. Math.. 2007, 609 137-159

[20]

Kobayashi S. First Chern class and holomorphic tensor fields. Nagoya Math. J.. 1980, 77 5-11

[21]

Kobayashi S. Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A Math. Sci.. 1982, 58 4 158-162

[22]

Kobayashi,S. : Differential geometry of holomorphic vector bundles, Publications of the Mathematical Society of Japan, 15. Kano Memorial Lectures, 5. Princeton University Press, Princeton, NJ (1987)

[23]

Li JY. Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds. Commun. Anal. Geom.. 2000, 8 3 445-475

[24]

Li JY, Narasimhan MS. Hermitian-Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.). 1999, 15 1 93-114

[25]

Li J, Zhang CJ, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. Partial Differ. Equ.. 2017, 56 3 81

[26]

Li JY, Zhang X. Existence of approximate Hermitian-Einstein structure on semi-stable Higgs bundles. Calc. Var. Partial Differ. Equ.. 2015, 52 783-795

[27]

Li, J., Yau, S.T.: Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical aspects of string theory. Adv. Ser. Math. Phys., 1, World Sci., San Diego, California, Singapore (1986), pp. 560–573

[28]

Lübke M. Stability of Einstein-Hermitian vector bundles. Manuscripta Math.. 1983, 42 2–3 245-257

[29]

Lübke M, Teleman A. The Kobayashi-Hitchin correspondence. 1995 River Edge, NJ: World Scientific Publishing Co. Inc

[30]

Narasimhan MS, Seshadri CS. Stable and unitary vector bundles on a compact Riemann surface. Ann. Math.. 1965, 82 540-567

[31]

Nie YC, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J. Geom. Anal.. 2018, 28 1 627-642

[32]

Sibley B. Asymptotics of the Yang-Mills flow for holomorphic vector bundles over Kähler manifolds: the canonical structure of the limit. J. Reine Angew. Math.. 2015, 706 123-191

[33]

Simpson CT. Constructing variations of Hodge structures using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc.. 1988, 1 867-918

[34]

Uhlenbeck KK, Yau S-Y. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Commun. Pure Appl. Math.. 1986, 39S 257-293

[35]

Zhang CJ. Semi-stability for the holomorphic bundles with global sections. J. Partial Differ. Equ.. 2016, 29 204-217

[36]

Zhang X. Hermitian Yang-Mills-Higgs metric on complete Kähler manifolds. Can. J. Math.. 2005, 57 871-896

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/