Non-isometric Riemannian G-Manifolds with Equal Equivariant Spectra

Yuguo Qin

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (2) : 181 -190.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (2) : 181 -190. DOI: 10.1007/s40304-018-0149-6
Article

Non-isometric Riemannian G-Manifolds with Equal Equivariant Spectra

Author information +
History +
PDF

Abstract

In this paper, the author examines the two methods that people used to systematically construct isospectral non-isometric Riemannian manifolds, the Sunada–Pesce–Sutton method and the torus action method, and shows that both methods can be used to produce equivariantly isospectral non-isometric Riemannian G-manifolds. The author also shows that the Milnor’s isospectral pair is not equivariantly isospectral.

Keywords

Laplacian / Equivariant spectrum / Equivariantly isospectral

Cite this article

Download citation ▾
Yuguo Qin. Non-isometric Riemannian G-Manifolds with Equal Equivariant Spectra. Communications in Mathematics and Statistics, 2019, 7(2): 181-190 DOI:10.1007/s40304-018-0149-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adelstein IM, Sandoval MR. The $G$-invariant spectrum and non-orbifold singularities. Arch. Math.. 2017, 109 6 563-573

[2]

An JP, Yu JK, Yu J. On the dimension datum of a subgroup and its application to isospectral manifolds. J. Differ. Geom.. 2013, 94 1 59-85

[3]

Deturck DM, Gordon CS. Isospectral deformations I: Riemannian structures on two-step nilspaces. Commun. Pure Appl. Math.. 1987, 40 3 367-387

[4]

Donelly H. $G$-spaces, the asymptotic splitting of $L^2(M)$ into irreducibles. Math. Ann.. 1978, 237 23-40

[5]

Dryden EB, Guillemin V, Sena-Dias R. Hearing Delzant polytopes from the equivariant spectrum. Trans. Am. Math. Soc.. 2012, 364 2 887-910

[6]

Dryden EB, Macedo D, Sena-Dias R. Recovering $S^1$-invariant metrics on $S^2$ from the equivariant spectrum. Int. Math. Res. Not.. 2016, 2016 16 488

[7]

Gordon, C., Perry, P., Schueth, D.: Isospectral and isoscattering manifolds: a survey of techniques and examples. In Entov, M., Pinchover, Y., Sageev, M.(ed.), Geometry, Spectral Theory, Groups, and Dynamics. Contemporary Mathematics, vol. 387, pp. 157–179. American Mathematical Society, Providence, Rhode Island (2005)

[8]

Gordon CS. Isospectral deformations of metrics on spheres. Invent. Math.. 2001, 145 2 317-331

[9]

Gordon CS, Wilson EN. Isospectral deformations of compact solvmanifolds. J. Differ. Geom.. 1984, 19 1 241-256

[10]

Guillemin V, Wang Z. The generalized Legendre transform and its applications to inverse spectral problems. Inverse Probl.. 2016, 32 1 015001

[11]

Knapp, A.: Lie Groups Beyond an Introduction, 2nd edn. Progress in Mathematics, vol. 140. Birkhäuser Boston, Boston, MA (2002)

[12]

Larsen M, Pink R. Determining representations from invariant dimensions. Invent. Math.. 1990, 102 1 377-398

[13]

Milnor J. Eigenvalue of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. U. S. A.. 1964, 51 4 542-542

[14]

Pesce H. Représentations relativement équivalentes et variétés riemanniennes isospectrales. Comment. Math. Helv.. 1996, 71 2 243-268

[15]

Schueth D. Continuous families of isospectral metrics on simply connected manifolds. Ann. Math.. 1999, 149 1 287-308

[16]

Sunada T. Riemannian coverings and isospectral manifolds. Ann. Math.. 1985, 121 1 169-186

[17]

Sutton CJ. Isospectral simply-connected homogeneous spaces and the spectral rigidity of group actions. Comment. Math. Helv.. 2002, 77 4 701-717

[18]

Witt E. Eine Identitat zwischen Modulformen zweiten Grades. Abh. Math. Sem. Univ. Hamburg.. 1941, 14 323-337

Funding

National Nature Science Foundation of China(11571331)

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/