Scale-Free Percolation in Continuum Space

Philippe Deprez , Mario V. Wüthrich

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (3) : 269 -308.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (3) : 269 -308. DOI: 10.1007/s40304-018-0142-0
Article

Scale-Free Percolation in Continuum Space

Author information +
History +
PDF

Abstract

The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice ${\mathbb Z}^d$, $d\ge 1$, because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on ${\mathbb R}^d$: Particles are generated by a homogeneous marked Poisson point process on ${\mathbb R}^d$, and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.

Keywords

Scale-free percolation / Continuum percolation / Random-connection model / Degree distribution / Phase transition / Graph distance

Cite this article

Download citation ▾
Philippe Deprez, Mario V. Wüthrich. Scale-Free Percolation in Continuum Space. Communications in Mathematics and Statistics, 2019, 7(3): 269-308 DOI:10.1007/s40304-018-0142-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amini, H., Cont, R., Minca, A.: Stress testing the resilience of financial networks. Int. J. Theor. Appl. Finance (2012). https://doi.org/10.1142/S0219024911006504

[2]

Antal P, Pisztora A. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab.. 1996, 24 2 1036-1048

[3]

Berger N. Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys.. 2002, 226 3 531-558

[4]

Berger, N.: A Lower Bound for the Chemical Distance in Sparse Long-Range Percolation Models. ArXiv Mathematics e-prints (2004). arXiv:math/0409021

[5]

Berger, N.: Transience, Recurrence and Critical Behavior for Long-Range Percolation. ArXiv e-prints (2014). arXiv:math/0110296v3

[6]

Biskup M. On the scaling of the chemical distance in long-range percolation models. Ann. Probab.. 2004, 32 4 2938-2977

[7]

Bollobás B, Riordan O. Percolation. 2006 New York: Cambridge University Press

[8]

Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking systems. In: Fouque, J.P., Langsam, J.A. (eds.) Handbook on Systemic Risk. Cambridge University Press, New York (2013)

[9]

Daley DJ, Vere-Jones D. An Introduction to the Theory of Point Processes. Springer Series in Statistics. 1988 New York: Springer

[10]

Deijfen M, van der Hofstad R, Hooghiemstra G. Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat.. 2013, 49 3 817-838

[11]

Deprez P, Hazra RS, Wüthrich MV. Inhomogeneous long-range percolation for real-life network modeling. Risks. 2015, 3 1 1-23

[12]

Durrett R. Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. 2007 Cambridge: Cambridge University Press

[13]

Franceschetti M, Meester R. Random Networks for Communication. Cambridge Series in Statistical and Probabilistic Mathematics. 2007 Cambridge: Cambridge University Press

[14]

Gilbert EN. Random plane networks. J. Soc. Ind. Appl. Math.. 1961, 9 533-543

[15]

Grimmett GR. Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 1999 2 Berlin: Springer

[16]

Liggett TM, Schonmann RH, Stacey AM. Domination by product measures. Ann. Probab.. 1997, 25 1 71-95

[17]

Meester R, Roy R. Continuum Percolation, Cambridge Tracts in Mathematics. 1996 Cambridge: Cambridge University Press

[18]

Newman CM, Schulman LS. One-dimensional $1/\vert j-i\vert ^s$ percolation models: the existence of a transition for $s\le 2$. Commun. Math. Phys.. 1986, 104 4 547-571

[19]

Newman MEJ, Watts DJ, Strogatz SH. Random graph models of social networks. Proc. Natl. Acad. Sci. USA. 2002, 99 suppl 1 2566-2572

[20]

Penrose MD. On a continuum percolation model. Adv. Appl. Probab.. 1991, 23 3 536-556

[21]

Schulman LS. Long range percolation in one dimension. J. Phys. A. 1983, 16 17 L639-L641

[22]

van de Brug T, Meester R. On central limit theorems in the random connection model. Physica A. 2004, 332 1–4 263-278

[23]

Watts DJ. Six Degrees. 2003 New York: W. W. Norton & Co. Inc.

[24]

Willmot G, Lin X. Lundberg Approximations for Compound Distributions with Insurance Applications. Lecture Notes in Statistics. 2012 New York: Springer

[25]

Zhang ZQ, Pu FC, Li BZ. Long-range percolation in one dimension. J. Phys. A. 1983, 16 3 L85-L89

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/