On Binary Quadratic Forms Modulo n

Yang Liu , Yi Ouyang

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 61 -67.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 61 -67. DOI: 10.1007/s40304-018-0141-1
Article

On Binary Quadratic Forms Modulo n

Author information +
History +
PDF

Abstract

Given a binary quadratic polynomial $f(x_1,x_2)=\alpha x_1^2+\beta x_1x_2+\gamma x_2^2\in \mathbb {Z}[x_1,x_2]$, for every $c\in \mathbb Z$ and $n\ge 2$, we study the number of solutions $\mathrm {N}_J(f;c,n)$ of the congruence equation $f(x_1,x_2)\equiv c\bmod {n}$ in $(\mathbb {Z}/n\mathbb {Z})^2$ such that $x_i\in (\mathbb {Z}/n\mathbb {Z})^\times $ for $i\in J\subseteq \{1,2\}$.

Keywords

Binary quadratic form / Counting solutions / Congruence equation modulo n

Cite this article

Download citation ▾
Yang Liu, Yi Ouyang. On Binary Quadratic Forms Modulo n. Communications in Mathematics and Statistics, 2019, 7(1): 61-67 DOI:10.1007/s40304-018-0141-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/