A Note on Curvature Estimate of the Hermitian–Yang–Mills Flow

Jiayu Li , Chuanjing Zhang , Xi Zhang

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 319 -358.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (3) : 319 -358. DOI: 10.1007/s40304-018-0135-z
Article

A Note on Curvature Estimate of the Hermitian–Yang–Mills Flow

Author information +
History +
PDF

Abstract

In this paper, we study the curvature estimate of the Hermitian–Yang–Mills flow on holomorphic vector bundles. In one simple case, we show that the curvature of the evolved Hermitian metric is uniformly bounded away from the analytic subvariety determined by the Harder–Narasimhan–Seshadri filtration of the holomorphic vector bundle.

Keywords

Holomorphic structure / Harder–Narasimhan–Seshadri filtration / Hermitian–Yang–Mills flow

Cite this article

Download citation ▾
Jiayu Li, Chuanjing Zhang, Xi Zhang. A Note on Curvature Estimate of the Hermitian–Yang–Mills Flow. Communications in Mathematics and Statistics, 2018, 6(3): 319-358 DOI:10.1007/s40304-018-0135-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez-Consul L, Garcis-Prada O. Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains. Int. J. Math.. 2001, 2 159-201

[2]

Atiyah M, Bott R. The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A. 1982, 308 524-615

[3]

Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry, Sendai, 1985, 11C40. Advanced Studies in Pure Mathematics, 10. North-Holland, Amsterdam (1987)

[4]

Bando S, Siu YT. Mabuchi T, Noguchi J, Ochiai T. Stable sheaves and Einstein-Hermitian metrics. Geometry and Analysis on Complex Manifolds. 1994 Singapore: World Scientific. 39-50

[5]

Bartolomeis PD, Tian G. Stability of complex vector bundles. J. Differ. Geom.. 1996, 43 232-275

[6]

Biquard O. On parabolic bundles over a complex surface. J. Lond. Math. Soc. 1996, 53 2 302-316

[7]

Bradlow SB. Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys.. 1990, 135 1-17

[8]

Bradlow SB, Garcia-Prada O. Stable triples, equivariant bundles and dimensional reduction. Math. Ann.. 1996, 304 225-252

[9]

Cheng SY, Li P. Heat kernel estimates and lower bound of eigenvalues. Comment. Math. Helv.. 1981, 56 327-338

[10]

Collins T, Jacob A. Remarks on the Yang–Mills flow on a compact Kähler manifold. Univ. Iagel. Acta Math.. 2013, 51 17-43

[11]

Daskalopoulos G. The topology of the space of stable bundles on a Riemann surface. J. Differ. Geom.. 1992, 36 699-746

[12]

Daskalopoulos G, Wentworth R. Convergence properties of the Yang–Mills flow on Kähler surfaces. J. Reine Angew. Math.. 2004, 575 69-99

[13]

Daskalopoulos G, Wentworth R. On the blow-up set of the Yang–Mills flow on Kähler surfaces. Math. Z.. 2007, 256 301-310

[14]

Donaldson SK. A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom.. 1983, 18 279-315

[15]

Donaldson SK. Anti-self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc.. 1985, 50 1-26

[16]

Garcia-Prada O. Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math.. 1994, 5 1-52

[17]

Griffiths P, Harris J. Principles of Algebraic Geometry, Pure and Applied Mathematics. 1978 New York: Wiley-Interscience

[18]

Grigor’yan A. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom.. 1997, 45 1 33-52

[19]

Hironaka H. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math.. 1964, 79 1 109-203

[20]

Hironaka H. Flattening theorem in complex–analytic geometry. Am. J. Math.. 1975, 97 2 503-547

[21]

Hitchin NJ. The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc.. 1987, 55 59-126

[22]

Hong MC, Tian G. Asymptotical behaviour of the Yang–Mills flow and singular Yang–Mills connections. Math. Ann.. 2004, 330 3 441-472

[23]

Huybrechts D, Lehn M. Stable pairs on curves and surfaces. J. Algebr. Geom.. 1995, 4 1 67-104

[24]

Jacob A. The Yang-Mills flow and the Atiyah-Bott formula on compact Kähler manifolds. Amer. J. Math.. 2016, 138 2 329-365

[25]

Jost J, Zuo K. Harmonic maps and $Sl(r,C)$-representations of fundamental groups of quasiprojective manifolds. J. Algebr. Geom.. 1996, 5 1 77-106

[26]

Li, J., Yau, S.T.: Hermitian–Yang–Mills connection on non-Kähler manifolds, Mathematical aspects of string theory (San Diego, Calif., 1986), pp. 560–573, Adv. Ser. Math. Phys., 1. World Scientific Publishing, Singapore (1987)

[27]

Li JY, Zhang CJ, Zhang X. The limit of the Hermitian-Yang-Mills flow on reflexive sheaves. Adv. Math.. 2018, 325 165-214

[28]

Li, P.: Geometry analysis. Cambridge Studies in Advanced Mathematics (No. 134)

[29]

Li P. On the Sobolev constant and the $p$-spectrum of a compact Riemannian manifold. Ann. Sci. Ecole Norm. Sup.. 1980, 13 4 451-468

[30]

Li JY. Hermitian–Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds. Comm. Anal. Geom. 2000, 8 3 445-475

[31]

Li JY, Narasimhan MS. Hermitian–Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.). 1999, 15 1 93-114

[32]

Li P, Tam LF. The heat equation and harmonic maps of complete manifold. Invent. Math.. 1991, 105 1-46

[33]

Li JY, Zhang X. The gradient flow of Higgs pairs. J. Eur. Math. Soc.. 2011, 13 1373-1422

[34]

Li JY, Zhang X. Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles. Calc. Var. Partial Differ. Equ.. 2015, 52 3–4 783-795

[35]

Li J, Zhang X. The limit of the Yang–Mills–Higgs flow on Higgs bundles. Int. Math. Res. Not.. 2017, 2017 1 232-276

[36]

Li JY, Zhang CJ, Zhang X. Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. Partial Differ. Equ.. 2017, 56 3 81, 33

[37]

Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles and an application. Astérisque 309 (2006). ISBN: 978-2-85629-226-6

[38]

Mochizuki T. Kobayashi–Hitchin correspondence for tame harmonic bundles. Geom. Topol.. 2009, 13 1 359-455

[39]

Mundet i Riera I. A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math.. 2000, 528 41-80

[40]

Narasimhan MS, Seshadri CS. Stable and unitary vector bundles on compact Riemann surfaces. Ann. Math.. 1965, 82 540-567

[41]

Sibley B. Asymptotics of the Yang–Mills flow for holomorphic vector bundles over Kähler manifolds: the canonical structure of the limit. J. Reine Angew. Math.. 2015, 706 123-191

[42]

Sibley B, Wentworth R. Analytic cycles, Bott–Chern forms, and singular sets for the Yang–Mills flow on Kähler manifolds. Adv. Math.. 2015, 279 501-531

[43]

Simpson CT. Constructing variations of Hodge structures using Yang–Mills connections and applications to uniformization. J. Am. Math. Soc.. 1988, 1 867-918

[44]

Siu, Y.T.: Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics. Birkhauser, Basel-Boston, MR 89d, 32020 (1987)

[45]

Uhlenbeck, K.K.: A priori estimates for Yang–Mills fields, unpublished manuscript

[46]

Uhlenbeck KK. Connections with $L^p$ bounds on curvature. Commun. Math. Phys.. 1982, 83 1 31-42

[47]

Uhlenbeck KK, Yau ST. On existence of Hermitian–Yang–Mills connection in stable vector bundles. Comm. Pure Appl. Math.. 1986, 39S 257-293

[48]

Voisin C. Hodge Theory and Complex Algebraic Geometry. 2002 Cambridge: Cambridge University Press

[49]

Wilkin G. Morse theory for the space of Higgs bundles. Comm. Anal. Geom.. 2008, 16 2 283-332

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/