$\mathscr {F}$-groups,Sylow subgroups,${\mathcal {M}}$-supplemented subgroups,Solubly saturated formation" /> $\mathscr {F}$-groups" /> ${\mathcal {M}}$-supplemented subgroups" /> $\mathscr {F}$-groups,Sylow subgroups,${\mathcal {M}}$-supplemented subgroups,Solubly saturated formation" />

New Criteria for Quasi-$\varvec{\mathscr {F}}$-Groups

Juping Tang , Jia Zhang , Long Miao

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 25 -32.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 25 -32. DOI: 10.1007/s40304-018-0134-0
Article

New Criteria for Quasi-$\varvec{\mathscr {F}}$-Groups

Author information +
History +
PDF

Abstract

Let G be a finite group and $\mathscr {F}$ a saturated formation of finite groups. Then G is a quasi-$\mathscr {F}$-group if for every $\mathscr {F}$-eccentric chief factor H / K of G and every $x\in G$, x induces an inner automorphism on H / K. In this article, we obtain some results about the quasi-$\mathscr {F}$-groups and use them to give the conditions under which a group is quasisupersoluble.

Keywords

$\mathscr {F}$-groups')">Quasi-$\mathscr {F}$-groups / Sylow subgroups / ${\mathcal {M}}$-supplemented subgroups')">${\mathcal {M}}$-supplemented subgroups / Solubly saturated formation

Cite this article

Download citation ▾
Juping Tang, Jia Zhang, Long Miao. New Criteria for Quasi-$\varvec{\mathscr {F}}$-Groups. Communications in Mathematics and Statistics, 2019, 7(1): 25-32 DOI:10.1007/s40304-018-0134-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaad M. Finite groups with certain subgroups of Sylow subgroups complemented. J. Algebra. 2010, 323 1958-1965

[2]

Doerk K, Hawkes T. Finite Soluble Groups. 1992 Berlin: Walter de Gruyter

[3]

Guo W. The Theory of Classes of Groups. 2000 Beijing: Science Press-Kluwer Academic Publishers

[4]

Guo W, Skiba AN. On some classes of finite quasi-$\mathscr {F}$-groups. J. Group Theory. 2009, 12 407-417

[5]

Guo W, Skiba AN. On finite quasi-$\mathscr {F}$-groups. Comm. Algebra. 2009, 37 2 470-481

[6]

Guo W, Chen S. Weakly $c$-permutable subgroups of finite groups. J. Algebra. 2010, 324 9 2369-2381

[7]

Huppert B. Endliche Gruppen I. 1967 Berlin: Springer

[8]

Huppert B, Blackburn N. Finite Groups III. 1982 Berlin: Springer

[9]

Li S, He X. On normally embedded subgroups of prime power order in finite groups. Comm. Algebra. 2008, 36 6 2333-2340

[10]

Miao L, Lempken W. On ${\cal{M}}$-supplemented subgroups of finite groups. J. Group Theory. 2009, 12 2 271-287

[11]

Shemetkov LA. Formations of Finite Groups. 1978 Moscow: Nauka

[12]

Shemetkov LA, Skiba AN. Formations of Algebraic Systems. 1989 Moscow: Nauka

[13]

Shemetkov LA. Composition formations and radicals of finite groups. Ukranian Math. J. 1988, 40 318-322

[14]

Skiba AN. A characterization of the hypercyclically embedded subgroups of finite groups. J. Pure Appl. Algebra. 2011, 215 257-261

[15]

Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Isr. J. Math.. 1980, 35 3 210-214

Funding

NSFC(11701223)

NSFC(11501235)

the Key Natural Science Foundation of Anhui Education Commission(KJ2017A569)

Research project of China West Normal University(17E091)

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/