Finite 2-Groups Whose Number of Subgroups of Each Order are at Most $2^4$

Lifang Wang

Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (2) : 207 -226.

PDF
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (2) : 207 -226. DOI: 10.1007/s40304-018-0133-1
Article

Finite 2-Groups Whose Number of Subgroups of Each Order are at Most $2^4$

Author information +
History +
PDF

Abstract

Assume G is a group of order $2^n, n\ge 5$. Let $s_k(G)$ denote the number of subgroups of order $2^k$ of G. We classify finite 2-groups G with $s_k(G)\le 2^4,$ where $1\le k\le n$.

Keywords

Minimal nonabelian p-groups / Subgroup’s enumeration / Central extension

Cite this article

Download citation ▾
Lifang Wang. Finite 2-Groups Whose Number of Subgroups of Each Order are at Most $2^4$. Communications in Mathematics and Statistics, 2018, 6(2): 207-226 DOI:10.1007/s40304-018-0133-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An LJ, Liu YD. Describing finite $p$-groups with the number of subgroups. Adv. Math. (China). 2011, 40 3 285-292

[2]

Berkovich Y. Groups of Prime Power Order. 2008 Berlin: Walter de Gruyter

[3]

Berkovich Y. On the number of subgroups of given order in a finite $p$-group of exponent $p$. Proc. Am. Math. Soc.. 1990, 109 875-879

[4]

Besche HU, Eick B, O’Brien EA. A millennium project: constructing small groups. Int. J. Algebra Comput.. 2002, 12 623-644

[5]

Bosma W, Cannon J, Playoust C. The MAGMA algebra system I: the user language. J. Symb. Comput.. 1997, 24 235-265

[6]

Burnside W. Theory of Groups of Finite Order. 1897 Cambridge: Cambridge University Press

[7]

Dyubyuk, P.E.: On the number of subgroups of certain categories of finite $p$-groups. Mat. Sbornik N.S. 30(72), 575–580 (1952) (Russian)

[8]

Fan, Y.: A characterization of elementary abelian $p$-groups by counting subgroups. Math. Pract. Theory 1, 63–64 (1988) (in Chinese)

[9]

Hua LK, Tuan HF. Determination of the groups of odd-prime-power order $p^n$ which contain a cyclic subgroup of index $p^2$. Sci. Rep. Natl. Tsing. Hua Univ. Ser. A. 1940, 4 145-154

[10]

Hua LK. Some “Anzahl” theorems for groups of prime power orders. Sci. Rep. Natl. Tsing Hua Univ.. 1947, 4 313-327

[11]

Kulakoff A. Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in $p$-Gruppen. Math. Ann.. 1931, 104 778-793

[12]

Li, L.L., Qu, H.P., Chen, G.Y.: Central extension of inner abelian $p$-groups. I. Acta Math. Sin. (Chin. Ser.) 53:4, 675–684 (2010) (Chinese)

[13]

Li LL, Qu HP. The number of conjugacy classes of nonnormal subgroups of finite $p$-groups. J. Algebra. 2016, 466 44-62

[14]

McKelden AM. Groups of order $2^m$ that contain cyclic subgroups of order $2^{m-3}$. Am. Math. Monthly. 1906, 13 6–7 121-136d

[15]

Ninomiya Y. Finite $p$-groups with cyclic subgroups of index $p^2$. Math. J. Okayama Univ.. 1994, 36 1-21

[16]

Qu HP, Song Y, Zhang QH. Finite $p$-groups in which the number of subgroups of possible order are less than or equal $p^3 $. Chin. Ann. Math.. 2010, 31B 4 497-506

[17]

Qu HP. Finite non-elementary abelian $p$-groups whose number of subgroups is maximal. Israel J. Math.. 2013, 195 2 773-781

[18]

Rédei L. Das schiefe Produkt in der gruppentheorie. Comment. Math. Helvet.. 1947, 20 225-267

[19]

Tuan HF. An Anzahl theorem of Kulakoff’s type for $p$-groups. Sci. Rep. Natl. Tsing Hua Univ. Ser. A. 1948, 5 182-189

[20]

Wang, L.F.: Finite $p$-groups whose number of subgroups of each order is at most $p^4$, Algebra Colloquium (submitted)

[21]

Xu MY. A theorem on metabelian $p$-groups and some consequences. Chin. Ann. Math.. 1984, 5B 1-6

[22]

Xu MY, An LJ, Zhang QH. Finite $p$-groups all of whose nonabelian proper subgroups are generated by two elements. J. Algebra. 2008, 319 3603-3620

[23]

Zhang, Q.H.: A characterization of metacyclic p-groups by counting subgroups. In: Proceedings of the International Conference on Algebra, 2010, pp. 713–720, World Science Publication, Hackensack, NJ (2012)

[24]

Zhang QH, Li PJ. Finite $p$-groups with a cyclic subgroup of index $p^3$. J. Math. Res. Appl.. 2012, 32 5 505-529

[25]

Zhang QH, Qu HP. On Hua-Tuan’s conjecture. Sci. China Ser. A. 2009, 52:2 389-393

[26]

Zhang QH, Qu HP. On Hua-Tuan’s conjecture II. Sci. China Ser. A. 2011, 54:1 65-74

[27]

Zhang QH, Wei JJ. The intersection of subgroup of finite $p$-groups. Arch. Math.. 2011, 96 1 9-17

[28]

Zhang QH, Zhao LB, Li MM, Shen YQ. Finite $p$-groups all of whose subgroups of index $p^3$ are abelian. Commun. Math. Stat.. 2015, 3 1 69-162

Funding

NSFC(11471198)

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/