PDF
Abstract
We consider the tail behavior of the product of two dependent random variables X and $\Theta $. Motivated by Denisov and Zwart (J Appl Probab 44:1031–1046, 2007), we relax the condition of the existing $\alpha \,+\,\epsilon $ th moment of $\Theta $ in Breiman’s theorem to the existing $\alpha $th moment and obtain the similar result as Breiman’s theorem of the dependent product $X \Theta $, while X and $\Theta $ follow a copula function. As applications, we consider a discrete-time insurance risk model with dependent insurance and financial risks and derive the asymptotic tail behaviors for the (in)finite-time ruin probabilities.
Keywords
Copula
/
Dependent product
/
Regular variation
/
Ruin probabilities
Cite this article
Download citation ▾
Yu Chen, Dan Chen, Wenxue Gao.
Extensions of Breiman’s Theorem of Product of Dependent Random Variables with Applications to Ruin Theory.
Communications in Mathematics and Statistics, 2019, 7(1): 1-23 DOI:10.1007/s40304-018-0132-2
| [1] |
Asimit AV, Badescu AL. Extremes on the discounted aggregate claims in a time dependent risk model. Scandinavian Actuarial J.. 2010, 2 93-104
|
| [2] |
Bingham NH, Goldie CM, Teugels JL. Regular Variation. 1987 Cambridge: Cambridge University Press
|
| [3] |
Breiman L. On some limit theorems similar to the arc-sin law. Theory Probab. Appl.. 1965, 10 323-331
|
| [4] |
Chen Y. The finite-time ruin probability with dependent insurance and financial risks. J. Appl. Probab.. 2011, 48 1035-1048
|
| [5] |
Chen Y, Su C. Finite time ruin probability with heavy-tailed insurance and financial risks. Stat. Probab. Lett.. 2006, 76 1812-1820
|
| [6] |
Chen Y, Yang Y. Ruin probabilities with insurance and financial risks having an FGM dependence structure. Sci. China Math.. 2014, 57 1071-1082
|
| [7] |
Chen Y, Yuen KC. Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stochastic Models. 2009, 25 76-89
|
| [8] |
Cline DBH, Samorodnitsky G. Subexponentiality of the product of independent random variables. Stochastic Process. Appl.. 1994, 49 75-98
|
| [9] |
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Science and Business Media (2007)
|
| [10] |
de Haan L, Stadtmüller U. Generalized regular variation of second order. J. Aust. Math. Soc.. 1996, 61 3 381-395
|
| [11] |
Denisov D, Zwart B. On a theorem of Breiman and a class of random difference equations. J. Appl. Probab.. 2007, 44 1031-1046
|
| [12] |
Embrechts P, Goldie CM. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. (Series A). 1980, 29 243-256
|
| [13] |
Geluk, J., de Haan, L., Resnick, S., et al.: Second order regular variation, convolution and the central limit theorem. Cornell University Operations Research and Industrial Engineering (1995)
|
| [14] |
Goovaerts MJ, Kaas R, Laeven RJA, Tang Q, Vernic R. The tail probability of discounted sums of Pareto-like losses in insurance. Scandinavian Acturial J.. 2005, 6 446-461
|
| [15] |
Hashorva E, Hüsler J. Extreme values in FGM random sequences. J. Multivar. Anal.. 1999, 68 2 212-225
|
| [16] |
Hashorva E, Pakes AG. Tail asymptotics under beta random scaling. J. Math. Anal. Appl.. 2010, 372 496-514
|
| [17] |
Hashorva E, Pakes AG, Tang Q. Asymptotics of random contractions. Insur. Math. Econ.. 2010, 47 405-414
|
| [18] |
Hazra RS, Maulik K. Tail behavior of randomly weighted sums. Adv. Appl. Probab.. 2012, 44 794-814
|
| [19] |
Hua L, Joe H. Tail order and intermediate tail dependence of multivariate copulas. J. Multivar. Anal.. 2011, 102 10 1454-1471
|
| [20] |
Jiang J, Tang Q. The product of two dependent random variables with regularly varying or rapidly varying tails. Stat. Probab. Lett.. 2011, 81 957-961
|
| [21] |
Li J, Tang Q, Wu R. Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv. Appl. Probab.. 2010, 42 1126-1146
|
| [22] |
Liu R, Wang D. The ruin probabilities of a discrete-time risk model with dependent insurance and financial risks. J. Math. Anal. Appl.. 2016, 444 1 80-94
|
| [23] |
Mao T, Yang F. Risk concentration based on Expectiles for extreme risks under FGM copula. Insur. Math. Econ.. 2015, 64 429-439
|
| [24] |
Qu Z, Chen Y. Approximations of the tail probability of the product of dependent extreme random variables and applications. Insur. Math. Econ.. 2013, 533 169-178
|
| [25] |
Shen X, Lin Z, Zhang Y. Uniform estimate for maximum of randomly weighted sums with applications to ruin theory. Methodol. Comput. Appl. Probab.. 2009, 11 669-685
|
| [26] |
Su C, Chen Y. On the behavior of the product of independent random variables. Sci. China (Series A). 2006, 49 342-359
|
| [27] |
Tang Q. On convolution equivalence with applications. Bernoulli. 2006, 12 535-549
|
| [28] |
Tang Q. The subexponentiality of products revisited. Extremes. 2006, 9 231-241
|
| [29] |
Tang Q. From light tails to heavy tailsthrough multiplier. Extremes. 2008, 11 379-391
|
| [30] |
Tang Q. Insensitivity to negative dependence of asymptotic tail probabilities of sums and maxima of sums. Stochastic Anal. Appl.. 2008, 26 435-450
|
| [31] |
Tang Q, Tsitsiashvili G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Process. Appl.. 2003, 108 299-325
|
| [32] |
Tang Q, Tsitsiashvili G. Finite- and infinite-time ruin probabilities in the presence of stochastic returns on investments. Adv. Appl. Probab.. 2004, 36 1278-1299
|
| [33] |
Úbeda-Flores M. A new class of bivariate copulas. Stat. Probab. Lett.. 2004, 66 3 315-325
|
| [34] |
Yang H, Gao W, Li J. Asymptotic ruin probabilities for a discrete-time risk model with dependent insurance and financial risks. Scandinavian Actuarial J.. 2016, 2016 1 1-17
|
| [35] |
Yang H, Sun S. Subexponentiality of the product of dependent random variables. Stat. Probab. Lett.. 2013, 83 2039-2044
|
| [36] |
Yang Y, Hashorva E. Extremes and products of multivariate AC-product risks. Insur. Math. Econ.. 2013, 52 312-319
|
| [37] |
Yang Y, Konstantinides DG. Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks. Scandinavian Actuarial J.. 2015, 2015 8 641-659
|
| [38] |
Yang Y, Wang Y. Tail bahavior of the product of two dependent random variables with applications to risk theory. Extremes. 2013, 16 55-74
|
| [39] |
Yang Y, Zhang T, Yuen KC. Approximations for finite-time ruin probability in a dependent discrete-time risk model with CMC simulations. J. Comput. Appl. Math.. 2017, 321 143-159
|
| [40] |
Yi L, Chen Y, Su C. Approximation of the tail probability of randomly weighted sums of dependent random variables with dominated variation. J. Math. Anal. Appl.. 2011, 376 365-372
|
| [41] |
Zhou M, Wang K, Wang Y. Estimates for the finite-time ruin probability with insurance and financial risks. Acta Math. Appl. Sinica, English Ser.. 2012, 28 795-806
|
Funding
National Natural Science Foundation of China(71771203)
National Key Research and Development Plan(2016YFC0800104)