Extensions of Breiman’s Theorem of Product of Dependent Random Variables with Applications to Ruin Theory

Yu Chen , Dan Chen , Wenxue Gao

Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 1 -23.

PDF
Communications in Mathematics and Statistics ›› 2019, Vol. 7 ›› Issue (1) : 1 -23. DOI: 10.1007/s40304-018-0132-2
Article

Extensions of Breiman’s Theorem of Product of Dependent Random Variables with Applications to Ruin Theory

Author information +
History +
PDF

Abstract

We consider the tail behavior of the product of two dependent random variables X and $\Theta $. Motivated by Denisov and Zwart (J Appl Probab 44:1031–1046, 2007), we relax the condition of the existing $\alpha \,+\,\epsilon $ th moment of $\Theta $ in Breiman’s theorem to the existing $\alpha $th moment and obtain the similar result as Breiman’s theorem of the dependent product $X \Theta $, while X and $\Theta $ follow a copula function. As applications, we consider a discrete-time insurance risk model with dependent insurance and financial risks and derive the asymptotic tail behaviors for the (in)finite-time ruin probabilities.

Keywords

Copula / Dependent product / Regular variation / Ruin probabilities

Cite this article

Download citation ▾
Yu Chen, Dan Chen, Wenxue Gao. Extensions of Breiman’s Theorem of Product of Dependent Random Variables with Applications to Ruin Theory. Communications in Mathematics and Statistics, 2019, 7(1): 1-23 DOI:10.1007/s40304-018-0132-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asimit AV, Badescu AL. Extremes on the discounted aggregate claims in a time dependent risk model. Scandinavian Actuarial J.. 2010, 2 93-104

[2]

Bingham NH, Goldie CM, Teugels JL. Regular Variation. 1987 Cambridge: Cambridge University Press

[3]

Breiman L. On some limit theorems similar to the arc-sin law. Theory Probab. Appl.. 1965, 10 323-331

[4]

Chen Y. The finite-time ruin probability with dependent insurance and financial risks. J. Appl. Probab.. 2011, 48 1035-1048

[5]

Chen Y, Su C. Finite time ruin probability with heavy-tailed insurance and financial risks. Stat. Probab. Lett.. 2006, 76 1812-1820

[6]

Chen Y, Yang Y. Ruin probabilities with insurance and financial risks having an FGM dependence structure. Sci. China Math.. 2014, 57 1071-1082

[7]

Chen Y, Yuen KC. Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stochastic Models. 2009, 25 76-89

[8]

Cline DBH, Samorodnitsky G. Subexponentiality of the product of independent random variables. Stochastic Process. Appl.. 1994, 49 75-98

[9]

de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Science and Business Media (2007)

[10]

de Haan L, Stadtmüller U. Generalized regular variation of second order. J. Aust. Math. Soc.. 1996, 61 3 381-395

[11]

Denisov D, Zwart B. On a theorem of Breiman and a class of random difference equations. J. Appl. Probab.. 2007, 44 1031-1046

[12]

Embrechts P, Goldie CM. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. (Series A). 1980, 29 243-256

[13]

Geluk, J., de Haan, L., Resnick, S., et al.: Second order regular variation, convolution and the central limit theorem. Cornell University Operations Research and Industrial Engineering (1995)

[14]

Goovaerts MJ, Kaas R, Laeven RJA, Tang Q, Vernic R. The tail probability of discounted sums of Pareto-like losses in insurance. Scandinavian Acturial J.. 2005, 6 446-461

[15]

Hashorva E, Hüsler J. Extreme values in FGM random sequences. J. Multivar. Anal.. 1999, 68 2 212-225

[16]

Hashorva E, Pakes AG. Tail asymptotics under beta random scaling. J. Math. Anal. Appl.. 2010, 372 496-514

[17]

Hashorva E, Pakes AG, Tang Q. Asymptotics of random contractions. Insur. Math. Econ.. 2010, 47 405-414

[18]

Hazra RS, Maulik K. Tail behavior of randomly weighted sums. Adv. Appl. Probab.. 2012, 44 794-814

[19]

Hua L, Joe H. Tail order and intermediate tail dependence of multivariate copulas. J. Multivar. Anal.. 2011, 102 10 1454-1471

[20]

Jiang J, Tang Q. The product of two dependent random variables with regularly varying or rapidly varying tails. Stat. Probab. Lett.. 2011, 81 957-961

[21]

Li J, Tang Q, Wu R. Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv. Appl. Probab.. 2010, 42 1126-1146

[22]

Liu R, Wang D. The ruin probabilities of a discrete-time risk model with dependent insurance and financial risks. J. Math. Anal. Appl.. 2016, 444 1 80-94

[23]

Mao T, Yang F. Risk concentration based on Expectiles for extreme risks under FGM copula. Insur. Math. Econ.. 2015, 64 429-439

[24]

Qu Z, Chen Y. Approximations of the tail probability of the product of dependent extreme random variables and applications. Insur. Math. Econ.. 2013, 533 169-178

[25]

Shen X, Lin Z, Zhang Y. Uniform estimate for maximum of randomly weighted sums with applications to ruin theory. Methodol. Comput. Appl. Probab.. 2009, 11 669-685

[26]

Su C, Chen Y. On the behavior of the product of independent random variables. Sci. China (Series A). 2006, 49 342-359

[27]

Tang Q. On convolution equivalence with applications. Bernoulli. 2006, 12 535-549

[28]

Tang Q. The subexponentiality of products revisited. Extremes. 2006, 9 231-241

[29]

Tang Q. From light tails to heavy tailsthrough multiplier. Extremes. 2008, 11 379-391

[30]

Tang Q. Insensitivity to negative dependence of asymptotic tail probabilities of sums and maxima of sums. Stochastic Anal. Appl.. 2008, 26 435-450

[31]

Tang Q, Tsitsiashvili G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Process. Appl.. 2003, 108 299-325

[32]

Tang Q, Tsitsiashvili G. Finite- and infinite-time ruin probabilities in the presence of stochastic returns on investments. Adv. Appl. Probab.. 2004, 36 1278-1299

[33]

Úbeda-Flores M. A new class of bivariate copulas. Stat. Probab. Lett.. 2004, 66 3 315-325

[34]

Yang H, Gao W, Li J. Asymptotic ruin probabilities for a discrete-time risk model with dependent insurance and financial risks. Scandinavian Actuarial J.. 2016, 2016 1 1-17

[35]

Yang H, Sun S. Subexponentiality of the product of dependent random variables. Stat. Probab. Lett.. 2013, 83 2039-2044

[36]

Yang Y, Hashorva E. Extremes and products of multivariate AC-product risks. Insur. Math. Econ.. 2013, 52 312-319

[37]

Yang Y, Konstantinides DG. Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks. Scandinavian Actuarial J.. 2015, 2015 8 641-659

[38]

Yang Y, Wang Y. Tail bahavior of the product of two dependent random variables with applications to risk theory. Extremes. 2013, 16 55-74

[39]

Yang Y, Zhang T, Yuen KC. Approximations for finite-time ruin probability in a dependent discrete-time risk model with CMC simulations. J. Comput. Appl. Math.. 2017, 321 143-159

[40]

Yi L, Chen Y, Su C. Approximation of the tail probability of randomly weighted sums of dependent random variables with dominated variation. J. Math. Anal. Appl.. 2011, 376 365-372

[41]

Zhou M, Wang K, Wang Y. Estimates for the finite-time ruin probability with insurance and financial risks. Acta Math. Appl. Sinica, English Ser.. 2012, 28 795-806

Funding

National Natural Science Foundation of China(71771203)

National Key Research and Development Plan(2016YFC0800104)

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/