PDF
Abstract
In this article, we propose a new biased estimator, namely stochastic restricted modified almost unbiased Liu estimator by combining modified almost unbiased Liu estimator (MAULE) and mixed estimator (ME) when the stochastic restrictions are available and the multicollinearity presents. The conditions of superiority of the proposed estimator over the ordinary least square estimator, ME, ridge estimator, Liu estimator, almost unbiased Liu estimator, stochastic restricted Liu estimator and MAULE in the mean squared error matrix sense are obtained. Finally, a numerical example and a Monte Carlo simulation are given to illustrate the theoretical findings.
Keywords
Multicollinearity
/
Stochastic restrictions
/
Modified almost unbiased Liu estimator
/
Stochastic restricted modified almost unbiased Liu estimator
/
Mean squared error matrix
Cite this article
Download citation ▾
S. Arumairajan.
On the Stochastic Restricted Modified Almost Unbiased Liu Estimator in Linear Regression Model.
Communications in Mathematics and Statistics, 2018, 6(2): 185-206 DOI:10.1007/s40304-018-0131-3
| [1] |
Akdeniz F, Erol H. Mean squared error matrix comparisons of some biased estimators in linear regression. Commun. Stat. Theory Methods. 2003, 32 2389-2413
|
| [2] |
Alheety MI, Kibria BMG. Modified Liu-type estimator based on (r − k) class estimator. Commun. Stat. Theory Methods. 2013, 42 304-319
|
| [3] |
Arumairajan S, Wijekoon P. Modified almost unbiased liu estimator in linear regression model. Commun. Math. Stat.. 2017, 5 261-276
|
| [4] |
Farebrother RW. Further results on the mean square error of ridge regression. J. R. Stat. Soc. B. 1976, 38 248-250
|
| [5] |
Gruber MHJ. Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators. 1998 New York: Dekker Inc.
|
| [6] |
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970, 12 55-67
|
| [7] |
Hubert MH, Wijekoon P. Improvement of the Liu estimator in linear regression model. Stat. Pap.. 2006, 47 471-479
|
| [8] |
Kibria BMG. Performance of some new ridge regression estimators. Commun. Stat. Theory Methods. 2003, 32 419-435
|
| [9] |
Li Y, Yang H. A new stochastic mixed Ridge Estimator in linear regression. Stat. Pap.. 2010, 51 315-323
|
| [10] |
Li Y, Yang H. Two kinds of restricted modified estimators in linear regression model. J. Appl. Stat.. 2011, 38 1447-1454
|
| [11] |
Liu K. A new class of biased estimate in linear regression. Commun. Stat. Theory Methods. 1993, 22 393-402
|
| [12] |
McDonald GC, Galarneau DI. A Monte Carlo evaluation of some Ridge type estimators. J. Am. Stat. Assoc.. 1975, 70 407-416
|
| [13] |
Newhouse, J.P., Oman, S.D.: An evaluation of Ridge Estimators. Rand Report, No. R-716-Pr, 1-28 (1971)
|
| [14] |
Ozkale RM, Kaçiranlar S. The restricted and unrestricted two parameter estimators. Commun. Stat. Theory Methods. 2007, 36 2707-2725
|
| [15] |
Theil H, Goldberger AS. On pure and mixed estimation in Economics. Int. Econ. Rev.. 1961, 2 65-77
|
| [16] |
Trenkler G, Toutenburg H. Mean square error matrix comparisons between biased estimators—an overview of recent results. Stat. Pap.. 1990, 31 165-179
|
| [17] |
Wang SG, Wu MX, Jia ZZ. Matrix inequalities. 2006 2 Beijing: Chinese Science Press
|