The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems
Weinan E , Bing Yu
Communications in Mathematics and Statistics ›› 2018, Vol. 6 ›› Issue (1) : 1 -12.
The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems
We propose a deep learning-based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz Method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
Deep Ritz Method / Variational problems / PDE / Eigenvalue problems
| [1] |
|
| [2] |
E, W.: A proposal for machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1–11 (2017) |
| [3] |
Han, J.Q., Jentzen, A., E, W.: Overcoming the curse of dimensionality: solving high-dimensional partial differential equations using deep learning, submitted, arXiv:1707.02568 |
| [4] |
E, W., Han, J.Q., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, submitted, arXiv:1706.04702 |
| [5] |
Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, submitted. arXiv:1709.05963 |
| [6] |
Han, J.Q., Zhang, L., Car, R., E, W.: Deep potential: a general and “first-principle” representation of the potential energy, submitted, arXiv:1707.01478 |
| [7] |
Zhang, L., Han, J.Q., Wang, H., Car, R., E, W.: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics, submitted, arXiv:1707.09571 |
| [8] |
|
| [9] |
He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 |
| [10] |
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980, (2014) |
| [11] |
|
| [12] |
Huang, G., Liu, Z., Weinberger, K.Q., Laurens, V.D.M.: Densely connected convolutional networks. arXiv preprint. arXiv:1608.06993, (2016) |
/
| 〈 |
|
〉 |